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Abstract

Over the last two centuries, great advances have been made in microbiology as a
discipline. Much of this progress has come about as a consequence of studying the
growth and physiology of individual microbial species in well-defined laboratory
media; so-called “axenic growth”. However, in the real world, microbes rarely live in
such “splendid isolation” (to paraphrase Foster) and more often-than-not, share the
niche with a plethora of co-habitants. The resulting interactions between species
(and even between kingdoms) are only very poorly understood, both on a theoretical
and experimental level. Nevertheless, the last few years have seen significant progress,
and in this review, we assess the importance of polymicrobial infections, and show
how improved experimental traction is advancing our understanding of these. A
particular focus is on developments that are allowing us to capture the key features of
polymicrobial infection scenarios, especially as those associated with the human
airways (both healthy and diseased).

1. Introduction

Recent years have seen an increasing realisation that many chronic
infections are associated with not just a single species (the “pathogen”) but
often include a plethora of additional species, that may, or may not con-
tribute towards the pathology of the disease. Although Pasteur noted this in
the nineteenth century, it has only been with the advent of culture-
independent approaches in the twenty-first century that we have really
been able to mine this “microbial dark matter” (Lloyd, Steen, Ladau, Yin,
& Crosby, 2018; Pasteur & Joubert, 1877). These approaches have revealed
just how small the tip of the iceberg actually is (Fig. 1), revealing that a
welter of species, often across different kingdoms, often co-exist in
infection scenarios. In the wake of such advances, our goal here is to
present an overview of how these polyspecies-associated infections are now
being studied in vitro, with a particular focus on infections of the skin and
airway epithelia.

Microorganismal ecosystems seem to display all of the ecological diversity
and dynamism of their macroorganismal counterparts; qualities that are often
influenced as much by the environment in the infection niche as the
co-habiting species themselves (Dixon & Hall, 2015). Indeed, although
deterministic, interspecies interactions are seldom one-dimensional and it is
increasingly clear that co-habiting species sometimes simultaneously exhibit a
range of behaviours (Ho, Nazeer, & Welch, 2023). On the epithelia of
healthy humans, these interactions are typically balanced (“eubiotic”), and do
not require therapeutic intervention. However, in certain disease pathologies,
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this balance becomes dysbiotic, necessitating treatment (Harriott & Noverr,
2011; McKenzie, 2006). These challenges are particularly pronounced in
long-term, chronic infections, which are often described as being typically
polymicrobial in nature (Young, Hussell, & Dougan, 2002).

The problem is that our mechanistic understanding of inter-species
interactions remains remarkably limited. The main reason for this is that stable
polymicrobial communities have proven very difficult to recapitulate in vitro
(or using in vivo animal models); simply mixing different species together and
hoping for the best is a recipe for failure. Nevertheless, progress is now being

Fig. 1 The iceberg of microbiology. Recent advances have revealed how little we
know of the microbial world. The tip of the iceberg represents those culturable
organisms which have been studied most thoroughly, whereas the submerged part of
the iceberg represents the majority of microbial life – uncultured and unstudied.
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made, and not-too-soon either, since it is now clear that polymicrobial
cultures display markedly altered virulence and antimicrobial resistance
properties (Ibberson, Barraza, Holmes, Cao, & Whiteley, 2022). Moreover, it
is clear that we still do not understand how antibiotics act in complex
microbial communities. For example, people with cystic fibrosis (pwCF)
often acquire chronic airway infections, such that by their early ‘teens, their
airways are colonised by a veritable “zoo” of microbes (Crousilles et al., 2015;
Foweraker, 2008). Somewhat counter-intuitively, maintenance of a diverse
airway microbiota in this constituency of patients is associated with a better
long-term prognosis (Cuthbertson et al., 2020). However, the application of
antibiotics (targeted towards the principal pathogen present, which is usually
Pseudomonas aeruginosa) for routine infection management, or in response to
the occasional flare-ups (pulmonary exacerbation episodes) that characterise
CF airway disease progression, almost certainly leads to remodelling of the
airway microbiome. The patient usually gets better in the short term, but in
the longer-term, polymicrobial diversity (and hence, lung function) often
declines. Whether this progressive decline in diversity is a direct consequence
of the “collateral impact” of antibiotics on non-pathogenic co-habitants is not
clear. Moreover, antibiotics are stressors that may also effect population
remodelling indirectly by stimulating prophage to exit latency and enter the
lytic cycle. The resulting phage blooms may themselves contribute to
population remodelling (Federici, Nobs, & Elinav, 2021). Finally, if one or
more species are eliminated through antibiotic/phage action, the resulting
vacated niches will likely become filled, either by extant other co-habiting
species, genetic variants of these, or newly-arrived interlopers from the
exterior (Ashworth et al., 2024; Langdon, Crook, & Dantas, 2016; Lloyd-
Smith, 2013; Naureen et al., 2020). In the absence of well-defined poly-
microbial experimental systems to test these hypotheses, we still do not
understand how populations remodel following antibiotic challenge.

1.1 Tapping into ‘microbial dark matter’
Polymicrobial systems are often described in terms of two key parameters;
richness and abundance (Rogers et al., 2004). Culture-based methods,
which were traditionally the standard for identifying constituent micro-
biota, often fail to detect a significant portion of the species present
(Delhaes et al., 2012; Lloyd et al., 2018; Surette, 2014). However, recent
improvements in the throughput, cost, resolution and scalability of
sequencing technologies (Ten Hoopen et al., 2017) are now circumventing
this problem. In particular, two technologies have begun to dominate the
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field: targeted rRNA gene sequencing, and shotgun sequencing (“meta-
genomics”). The former uses amplification of hypervariable regions
(flanked by conserved regions, enabling the use of “universal” primers for
PCR) of the gene(s) encoding ribosomal RNA (Chistoserdovai, 2010).
The resulting so-called 16S amplicons contain enough sequence infor-
mation to allow identification and quantification of the bacterial and
archaeal species present. In the case of eukaryotes, so-called 18S rRNA and
internal transcribed spacer (ITS) sequencing is used for similar purposes
(Willger et al., 2014). Meanwhile, metagenomics provides a tally of the
entire gene content of a sample, enabling not only phylogenetic inferences
to be made, but also functional inferences (Weinstock, 2012). This not-
withstanding, both approaches have their pros and cons, and are not perfect
(Durazzi et al., 2021). For example, metagenomic depth of sequencing
remains an issue, since much of the sequencing effort will necessarily be
directed towards more abundant species, or species with larger genomes.
Moreover, and rarely explicitly addressed, different species (or even dif-
ferent strains of a single species) often contain multiple “16S genes”. For
example, Pseudomonas aeruginosa encodes, on the average, four 16S rRNA-
encoding genes, whereas other common airway cohabitants, Rothia muci-
laginosa and Staphylococcus aureus, contain an average of 3 and 6 copies of the
same gene, respectively. The extent to which these differences in copy
number might frustrate proper analysis and quantitation is not always made
clear (or sometimes, apparently even considered) (Větrovský & Baldrian,
2013). Similarly, within-organism differences in 16S gene sequence are also
rarely discussed (Pei et al., 2010). Finally, many studies ignore the issue of
dead cells – an issue that can be significant in antibiotic-treated samples – in
spite of a simple experimental solution for the problem (involving propi-
dium azide treatment (Nocker, Sossa-Fernandez, Burr, & Camper, 2007)).
Nonetheless, both rRNA amplicon and metagenomics are serving to
unlock a great deal of previously hidden information about the poly-
microbial world.

Perhaps the best studied microbiome in humans is that associated with the
gut, but since this has been extensively reviewed elsewhere, here, we focus on
infections affecting the airways and skin (Singh, Natalini, & Segal, 2022).

1.2 The airway microbiota
Historically, the lungs in healthy individuals were believed to be essentially
sterile (Flanagan et al., 2007; Laurenzi, Berman, First, & Kass, 1964). That this
belief persisted for so long, is a good example of how certain philosophies can
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become entrenched, in spite of accruing evidence to the contrary. Indeed, a
wealth of data now challenges this long-standing view of pulmonary sterility
(Hilty et al., 2010; Rogers et al., 2004). Several authors have suggested – and we
agree with them – that a key issue in the field has been an over-reliance on
traditional clinical microbiology (Losada, Ghedin, Morris, Chu, & Nierman,
2011). This involves culturing clinically-derived samples on selective media.
The problem with this approach is that you only grow what you’re looking for.
Even media commonly – although somewhat naively – perceived as allowing
growth of a wide spectrum of genera (e.g., rich media such as Luria (Bertani)
Broth) actually only allow the growth of a small percentage of species. [We note
here that Luria Broth (more properly known as lysogeny broth) was originally
developed to enable the growth of enterics such as Shigella sp.] However, the
application of culture-independent technologies over the last two decades has
drastically altered this perception (Charlson et al., 2011; Dickson et al., 2015).
We now appreciate that healthy lungs are, in fact, populated by diverse com-
munities, including bacteria, fungi, viruses, and archaea, constituting what is
known as the lung microbiota (Moffatt & Cookson, 2017). This shift in
understanding acknowledges the lung’s contiguity with the upper respiratory
tract; structures that are rich in microbes. Although, the microbial biomass in
healthy lungs is very low compared with other sites such as the gut, skin or
mouth, it is non-negligible (Whiteside, McGinniss, & Collman, 2021).

Another under-appreciated factor in many analyses relates to sampling
methods. For example, when monitoring the lung microbiota, expectorated
sputum samples have been widely used, although with the advent of highly-
effective modulators, sputum from one well-studied constituency – people with
cystic fibrosis – is becoming increasingly difficult to obtain. However, it is
impossible to know which areas of the respiratory tract have contributed to the
sample, so ‘omics approaches can only report on the aggregate of material,
which may also include oral bacteria (Charlson et al., 2011). Ideally, what is
needed is very specific sampling e.g., of single lung lobes. If not carried out
post-mortem or on explanted material, such approaches are currently highly
invasive and not surprisingly, patients are not voluntarily queuing up for the
procedure (Melnik et al., 2019; Sze et al., 2012). The current gold standard for
spatially-resolved sampling is the bronchoalveolar lavage (BAL), which involves
flushing sterile saline into the lung, followed by suction to collect the sample.

1.2.1 Understanding the healthy respiratory microbiome
Recent evidence has shown that microbial colonisation on mammalian
epithelia influences the host physiology, regulating immune processes and
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limiting disease in healthy individuals (Lloyd-Price, Abu-Ali, &
Huttenhower, 2016). Consequently, and far from the historical under-
standing of the healthy lung as an essentially sterile organ, it is now clear that
the pathological state may be better described as a microbial dysbiosis rather
than the presence/absence of microbes per se. However, in the absence of a
better understanding of what constitutes a healthy lung microbiome, dys-
biosis is somewhat difficult to define. Recent progress in this regard has been
made through metagenomic analyses, which appear to show substantial
variance in composition of the healthy lung microbiota, even among groups
of similar individuals (Bassis et al., 2015; Bittinger et al., 2014; Charlson
et al., 2011; Martinsen et al., 2021; Van Woerden et al., 2013). Some
common features are apparent though. First, and with the somewhat con-
tentious exception of phage, bacteria are typically the most populous inha-
bitants of the respiratory tract. Second, the lower respiratory tract (LRT)
maintains a lower microbial biomass than the upper respiratory tract
(Dickson et al., 2015). This status quo is likely maintained as a consequence
of efficient microbial clearance mechanisms (Man, De Steenhuijsen Piters, &
Bogaert, 2017).

While interest in the bacterial microbiota of the airways has blossomed,
other members of the lung ecosystem – including fungi, archaea, and
viruses – have received somewhat less attention. This is largely due to the
fact that such denizens are often not picked up using a single experimental
platform (re: the necessity for 16S vs ITS analyses when comparing bacteria
with fungi, for example). Moreover, DNA extraction methodology is
different for different kingdoms, or even within a kingdom re: Gram-
positive vs Gram-negative bacterial genera. There have, however, been
developments in building the overall picture, including definition of the
“mycobiome”, “virome” and “archaeome”.

Exposure to prokaryotic molecular signatures, crucial for immune system
maturation, start early in life (Pattaroni et al., 2018). The delivery mode at birth
significantly influences initial microbial colonisation of the airways; vaginal
delivery usually leads to a higher abundance of Ureaplasma, whereas caesarean
delivery is more commonly associated with Staphylococcus. As neonates mature,
their lung microbiome undergoes a shift towards a richer mixture of oral
commensals such as Streptococcus, Porphyromonas, Prevotella, and Veillonella. Early
enrichment of the latter two genera has been linked to the development of
reactive airway diseases such as asthma later in life (Thorsen et al., 2019).

There are also interesting hints that lifestyle choices in otherwise healthy
individuals can influence the airway microbiota. For example, recent studies
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on the effect of smoking have demonstrated perturbations in the phage
population (Gregory, Sullivan, Segal, & Keller, 2018; Tong et al., 2019).
The health implications of such findings are not yet clear, although given
that phages are known to drive population remodelling, our suggestion is to
“watch this space” (Federici et al., 2021; Rolain, Fancello, Desnues, &
Raoult, 2011). In a similar vein, lung microbiota eubiosis can also be affected
by interventions aimed at promoting health, such as antibiotic treatments. In
healthy individuals, lung eubiosis is normally maintained by a complex web
of inter-species interactions, as well as by host-dependent processes such as
mucociliary clearance and basal immune activity (Nelson et al., 2020).
Antibiotics perturb this balance, since they often have as much of an effect on
the commensal microflora as they do on the perceived pathogen(s) present.

In summary, and in spite of the fact that there is currently no consensus
on what constitutes a healthy, eubiotic “core microbiome”, it is increas-
ingly obvious that microbial ‘dysbiosis’ can be a signature (and even a
cause) of pathology. Dysbiosis is not only characterised by altered abun-
dances of individual species, but also by changes in the total microbial
carrying capacity of the lung. Qualifying this, it is also clear that certain
diseases such as CF, chronic obstructive pulmonary disorder (COPD), and
idiopathic pulmonary fibrosis may also be associated with their own unique
microbiotal signatures (Amati et al., 2022; Cuthbertson et al., 2020;
Jankauskaitė, Misevičienė, Vaidelienė, & Kėvalas, 2018; Leitao Filho et al.,
2019; Van Der Gast et al., 2011).

1.2.2 The respiratory microbiota in disease
Lung dysbiosis, whether a symptom or cause of disease, has become an
important parameter in understanding pulmonary dysfunction (Chen et al.,
2023). CF is a genetic condition characterised by malfunctioning/mis-
targeting of an epithelial chloride/bicarbonate pump, the cystic fibrosis
transductance regulator (CFTR) (Basics of the CFTR Protein, Cystic
Fibrosis Foundation). PwCF manifest a broad range of health conditions,
most obvious of which is usually the production of thicker airway mucus
and impaired mucociliary clearance. This phenotype is thought to be a
major underlying cause of lung dysbiosis in CF (Mika et al., 2016; Moran
Losada et al., 2016). The most frequently encountered CFTR genotype in
Europe and the USA is the ΔF508 variant. People homozygous for ΔF508
(or heterozygous for this variant, but carrying another CFTR inactivating
mutation on the other allele) exhibit impaired airway function and a
progressive decline in lung capacity (Françoise & Héry-Arnaud, 2020;
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Kosorok et al., 2001; Orkin Lewin, Byard, & Davis, 1990). Moreover, and
despite medical advancements, lung infections remain a leading cause of
mortality in pwCF (Françoise & Héry-Arnaud, 2020).

As in other conditions, the CF lung microbiota display significant inter-
individual variability in terms of composition and diversity (Magurran &
Henderson, 2003; Surette, 2014). This makes it difficult to define a “core
CF-associated microbiota”, although commonly found inhabitants include
species from the genera Streptococcus, Staphylococcus, Pseudomonas, Burkholderia,
Stenotrophomonas, Achromobacter and Haemophilus, with the latter found mostly
in paediatric samples. Unexpectedly for an aerobic organ, the CF lung
microbiota also often include an abundance of anaerobes (Cuthbertson et al.,
2016; Lamoureux, Guilloux, Beauruelle, Jolivet-Gougeon, & Héry-Arnaud,
2019). The airways of pwCF also typically exhibit a higher prevalence of
common respiratory viruses than the general population, potentially con-
tributing to increased morbidity (Jankauskaitė et al., 2018). The presence of
these viruses often correlates with bacterial co-infections, including those
associated with Pseudomonas aeruginosa. It has been speculated that these co-
infections may be linked with acute pulmonary exacerbations and impaired
lung function (Billard et al., 2017; Jankauskaitė et al., 2018).

The CF airways also have a characteristic mycobiome, which often
includes genera such as Candida, Aspergillus, or Malassezia (Willger et al.,
2014). It has been argued that such genera are mostly transient, although
Candida sp. are now known to be associated with many pwCF (Magee,
Louis, Khan, Micalo, & Chaudary, 2021). These fungal species can poten-
tially interact with the bacteriome and/or virome, giving rise to inter-
kingdom signalling (Delhaes et al., 2012; Soret et al., 2020; Willger et al.,
2014). There is evidence to suggest that archaea can also be found in the CF
airways, although current estimates suggest a patchy distribution between
patients and low abundance where they are found (Koskinen et al., 2017;
Moran Losada et al., 2016).

Lung function and microbial diversity are typically highest in younger
pwCF, decreasing with age and plateauing at around age 25 (Cox et al.,
2010; Klepac‐Ceraj et al., 2010). In long-term follow-up studies, stable
respiratory function correlates with maintenance of a stable and diverse
microbial population in the airways. Conversely, decreased microbial
diversity is linked with declining lung function and the establishment of
dominant populations of pathogens such as P. aeruginosa (Coburn et al.,
2015; Frayman et al., 2017; Jorth et al., 2019; Zemanick et al., 2017).
Other potentially pathogenic taxa, such as Staphylococcus, Haemophilus, and
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Burkholderia, are also more prevalent in older pwCF (Boutin et al., 2015;
Coburn et al., 2015; Zemanick et al., 2017). Interestingly, sex hormones
may also determine (to an extent) predisposition to infection by certain
pathogens (Lam, Goodwin, Wilcox, & Quon, 2021).

As noted above, the microbial diversity in the airways of a typical pwCF
declines over time. This decline may take decades and may have a lot to do
with aggressive and prolonged antibiotic use (Li et al., 2016; Patangia,
Anthony Ryan, Dempsey, Paul Ross, & Stanton, 2022). Indeed, the
colonising organisms in pwCF often acquire distinct ‘resistomes’ as a result
of these protracted antibiotic regimes. P. aeruginosa and Staphylococcus aureus
infections remain the most challenging CF-associated airway infections to
treat, and therapeutic interventions are frequently directed towards
managing these (Hatziagorou et al., 2020). However, recent years have
seen a shift in the epidemiology of CF lung infections, with a notable
increase in the prevalence of Aspergillus fumigatus and non-tuberculous
mycobacteria (Gannon & Darch, 2021). All of these pathogens have been
consistently linked with poorer clinical outcomes (Jhun et al., 2017).

Interspecies interactions within the CF lung are likely to play a sig-
nificant role in determining the outcome of antibiotic intervention, and in
affecting tolerance to host immune defences (O’Brien, Figueroa, & Welch,
2022). Understanding these interactions will therefore be crucial if we are
to develop improved, more effective interventions (Gannon & Darch,
2021). However, most studies necessarily currently focus on microbial
community composition at the genus level, and ignore intra-genus and
even intra-species variability, which can also impact community behaviour.
By way of example, the P. aeruginosa populations in the CF airways are
rarely genomically homogenous, and often include a plethora of genetic
variants (Dmitrijeva et al., 2021; Schick, Shewaramani, & Kassen, 2022).
This variability might explain differences in disease status that are not
apparent at the genus level (Coburn et al., 2015).

1.3 The skin microbiota
Unsurprisingly, given its exposure to the exterior, the skin harbours a diverse
microbiota, whose composition changes following injury or insult (Santiago-
Rodriguez, Le François, Macklaim, Doukhanine, & Hollister, 2023; Zeeuwen
et al., 2012). Moreover, the recorded microbiota can show a strong depen-
dence on the sampling method(s) employed (Kool, Tymchenko, Shetty, &
Fuentes, 2023). Skin sampling methods include swabs, tape stripping, and
biopsy. Swabs and tape strips primarily collect microbes from the skin surface,
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whereas biopsies offer a more comprehensive analysis of the skin, inclusive of
the deeper layers (Liang et al., 2022; Santiago-Rodriguez et al., 2023). To
explore the skin microbiota, researchers have used both culture-dependent and
-independent techniques, with their attendant advantages and limitations
(Acosta et al., 2023; Kalan et al., 2019; Schoch et al., 2023). Even following
the advent of sequencing methodology, species-level distinction can remain
challenging. This is important because in genera such as Staphylococcus,
pathogenic species such as S. aureus are closely related to certain commensals
(e.g., S. epidermidis) involved in epidermal eubiosis (Lai et al., 2010; Li, Huang,
Xu, Li, & Li, 2019; Newstead, Varjonen, Nuttall, & Paterson, 2020). The low
microbial biomass and high host DNA content in skin samples can also be
limiting factors in the analyses (Rungjang et al., 2022).

1.3.1 The microbiota of healthy skin
Skin may be moist, sebaceous, or dry – making it a potential home for an
array of species, including bacteria, fungi, viruses, and archaea. Interestingly,
the presence of these commensals often apparently depresses colonisation by
pathogenic organisms (Callewaert, Ravard Helffer, & Lebaron, 2020; Chen,
Fischbach, & Belkaid, 2018). Protective mechanisms include production of
antimicrobial compounds, and indirect competitive exclusion (Nakatsuji
et al., 2017; SanMiguel & Grice, 2015).

The healthy skin microbiota are known to be influenced by a variety of
host-related factors such as age, genetics, and anatomical site, as well as by
environmental factors including climate, country of residence, and urban or
rural settings (Gupta, Paul, & Dutta, 2017; Leung, Wilkins, & Lee, 2015;
Rungjang et al., 2022; Sachdeva, Satyamoorthy, & Murali, 2022; Wang
et al., 2021; Ying et al., 2015). This complexity has led to the concept of
the “pan-microbiome”, which, like the respiratory microbiome described
above, challenges our definition of what a “normal” microbiome should
look like (Leung et al., 2015). Using culture-independent methods, Grice
et al. (2009) have identified at least 19 phyla and over 1000 bacterial species
across 20 different skin sites. Fungal species have received less attention
than their bacterial counterparts, but nevertheless, constitute an important
contingent of the skin microbiota and often appear to be exquisitely sen-
sitive to the skin microenvironment (Cui, Morris, & Ghedin, 2013;
Findley et al., 2013; Paulino, Tseng, Strober, & Blaser, 2006; Roth &
James, 1988; Underhill & Iliev, 2014; Zhang et al., 2011). Interestingly,
and unlike the respiratory microbiome (where they constitute only a minor
fraction of the microbiota), the archaea are more abundant on the skin,
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comprising up to 4% of the overall microbial diversity (Moissl-Eichinger
et al., 2017; Probst, Auerbach, & Moissl-Eichinger, 2013).

As with the study of gut and lung microbiota, a better understanding of
what constitutes a “healthy” skin microbiota offers the potential for arti-
ficial reconstitution, enhancing skin health management and wound care.

1.3.2 The wound microbiota
Wounds provide an aperture for microbes to invade and colonise the
underlying tissues, potentially leading to infection (Tipton et al., 2019;
Tomic-Canic, Burgess, O’Neill, Strbo, & Pastar, 2020). Chronic wounds
impact millions of people worldwide, are costly to manage and can be
associated with severe complications like pain, immobility, social isolation,
morbidity, and mortality (Armstrong, Boulton, & Bus, 2017; Frykberg &
Banks, 2015; Järbrink et al., 2017; Nussbaum et al., 2018; Sen, 2021). Not
surprisingly, the microorganisms associated with chronic wound infections
often resemble those on nearby healthy skin, including both commensals (that
may aid in healing) and opportunistic pathogens (which prevent healing)
(Kalan & Grice, 2018; Verbanic, Shen, Lee, Deacon, & Chen, 2020).
Wolcott et al. (2016) reported a high incidence of Staphylococcus and Pseu-
domonas species in chronic wound infection scenarios, alongside commensals
and anaerobes (Citron, Goldstein, Merriam, Lipsky, & Abramson, 2007;
Malone et al., 2017). The presence of these anaerobes, which include genera
such as Finegoldia, Prevotella, Peptoniphilus, Peptostreptococcus and Anaerococcus,
correlates with poorer healing outcomes (Kalan et al., 2019; Min et al., 2020;
Sloan et al., 2019; Verbanic et al., 2020). More generally, biofilm formation
has been reportedly associated with a majority (60–100%) of chronic wounds
in several different studies (James et al., 2008; Johani et al., 2017; Malone
et al., 2017; Wolcott et al., 2016). This conclusion appears to be primarily
based on the close physical association of microbial cells with wound tissue,
and the presence of biofilm-like aggregates of cells in wound exudates, since
for most organisms, there are no well-defined biomarkers of “a biofilm”.

2. Laboratory endeavours

2.1 Models for the study of polymicrobial infections
As noted above, advances in culture-independent methods have allowed
investigators to modestly tap into the estimated 85–99% of microbial life that is
“unculturable” and mostly uncharacterised (Lok, 2015; Rinke et al., 2013).
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Even within the estimated 1–15% contingent of microbes that are culturable,
experimental regimes that allow stable co-cultivation alongside other species
are few-and-far between. The problem is that simple inoculation of a flask or
microplate with a mixed microbial inoculum almost always fails to capture the
stability and diversity associated with chronic infections. Such unstable co-
cultures display considerable dynamic change (usually, over the course of
hours rather than days or weeks) and therefore exaggerate the significance of
inter-microbial competition and dominance. Despite their obvious flaws,
these in vitro setups are still widely reported, even though they can sometimes
have only limited scientific value. One reason for this may be that such models
are usually cheap and well-suited to high throughput, and despite their lim-
itations, many laboratories continue to use them (Bernardy, Raghuram, &
Goldberg, 2022; Filkins et al., 2015; Kvich et al., 2022; Luján et al., 2022;
Magalhães, Jorge, & Pereira, 2019; Mitchell et al., 2010; Pajon et al., 2023;
Price, Brown, Limoli, Phelan, & O’Toole, 2020; Tognon et al., 2017;
Vasiljevs, Gupta, & Baines, 2023). By contrast, models that better capture
long-term polymicrobial stability and infection-associated characteristics are
usually more expensive to set up, and much lower in throughput. In essence,
you get what you pay for.

Before going into details, it is worth noting that a set of guidelines have
been suggested by O’Toole et al. (2021) for modelling CF-related poly-
microbial infections. They recommend defining the research goal clearly
and ensuring that this goal is matched with an appropriate model, albeit in
the spirit of the adage that “all models are wrong, but some can be useful”.
This is because reliance on a single model system is likely to exaggerate
outcomes that emerge from peculiarities of that particular experimental
system. Simple in vitro and ex vivo systems are more manipulable and
conducive to hypothesis-driven work but may perhaps be best used in
synergy with more complex and representative in vivo studies (although in
vivo polymicrobial disease models are still in their infancy).

2.2 Models of CF lung microbiology
A fundamental criterion for in vitro CF infection models should the ability
to maintain a stable steady state, although recent research has raised the
question of just how “stable” this steady state is in vivo (Raghuvanshi et al.,
2020). [Mitigating, and as those authors point out, the daily fluctuations in
CF microbial diversity that they observe may also be a reflection of the
nature and origin of the samples being assayed (sputum) rather than gen-
uine fluctuations in the steady-state dynamics of the CF microbiota.].
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In CF research, the current medium of choice is Artificial Sputum
Media (ASM) or Synthetic Cystic Fibrosis Sputum (SCFM), which closely
replicate the chemistry of CF patient sputum (Aiyer & Manos, 2022;
Kirchner et al., 2012). Common laboratory media such as lysogeny broth
(LB) should be avoided. The transcriptome of P. aeruginosa in SCFM and in
human sputum is essentially identical (On et al., 2023; Turner, Wessel,
Palmer, Murray, & Whiteley, 2015). However, Neve, Carrillo, and Phelan
(2021) caution that differences in ASM formulations, originating from the
more complex ingredients like mucin, can influence bacterial physiology
and virulence, and impede reproducibility. Moreover, it should be noted
that, although ASM/SCFM have been optimised to capture the physio-
logical characteristics of P. aeruginosa in the CF environment, the medium
is not optimised for the growth of other CF-associated pathogens, and
indeed, not all of these grow in ASM.

Quinn et al. (2015) developed the in vitro Winogradsky-based culture
model to study how the physiology of the CF lung contributes to pul-
monary exacerbations. They made Winogradsky columns by filling
narrow- gauge capillary tubes with ASM to simulate the physicochemical
gradients in CF bronchioles. After inoculating columns with CF patient
sputum expectorated during pulmonary exacerbations, they noted
changes in pH, gas production, and community composition (by 16S
rDNA analyses). These authors concluded that fluctuations in fermen-
tative anaerobes likely play a role in pulmonary exacerbations.

In the interest of studying the effect of perturbations on a stable, CF-
relevant polymicrobial ecosystem, of O’Brien and Welch (2019) estab-
lished an in vitro continuous flow system using ASM. They inoculated
the setup with a Gram-negative CF pathogen (P. aeruginosa), a Gram-
positive CF pathogen (S. aureus) and a fungal CF pathogen (C. albicans).
The optimal flow rate turned out to closely approximate with the esti-
mated fluid replacement rate in human airways, and remarkably, irre-
spective of the ratio of inoculating microbes, the steady state achieved
after 24 h was always the same. This indicated a “hardwired” ecological
relationship between the species. Transcriptomic analyses revealed that
the microbial population was maintained in slow exponential growth
(just as in the CF airways) (Bartell et al., 2019; La Rosa, Rossi, Feist,
Johansen, & Molin, 2021; O’Brien et al., 2022; Yang et al., 2008). A
similar flow-chamber system has been used by Tolker‐Nielsen and
Sternberg (2011) and Yang et al. (2011) for co-culturing biofilms of
S. aureus and P. aeruginosa.
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Models have also been developed to capture the spatial and metabolic
heterogeneity of the CF lung environment (Bragonzi et al., 2012). For
example, Lopes, Azevedo, and Pereira (2017) explored how polymicrobial
biofilm formation is influenced by oxygen availability, and more recently,
Kasetty, Mould, Hogan, and Nadell (2021) used microfluidics to quanti-
tatively assess the relationship between flow and biomass production in
biofilms of P. aeruginosa and C. albicans. These diverse approaches under-
score the increasing sophistication being applied to polymicrobial cultures,
particularly in the context of CF airway infections.

One obvious feature missing from the approaches described above are
host cells and a host immune input. On the one hand, the highly-repro-
ducible polymicrobial cultures described by O’Brien and Welch (2019)
appear to faithfully mimic the species titres seen in CF sputum, suggesting
that such host influences may play little role in airway microbiology. On the
other hand, it seems inconceivable that the host immune response plays no
major role in shaping the microbial community architecture. Human cell-
culture and cellular microbiology infection models, including chips, organ-
on-chips, and organoids, present an innovative approach by blending in vitro
and in vivo characteristics (López-Jiménez & Mostowy, 2021). These models
are proving increasingly valuable in exploring how human bronchial epi-
thelial cells interact with microbes (and vice versa), especially those carrying
the ΔF508 CFTR mutation (Filkins et al., 2015).

So, what does the future hold for such models? A key gold standard will
be to culture polymicrobial communities direct from CF sputum or BAL
samples. This approach, of creating “personalised infection models” would
capture not only the species present (and ideally, in the same ratios as found
in the patient’s airway secretions), but also the specific lineages of each
species found in the patient. Such intra-species diversity has received scant
attention in the context of CF polymicrobial infection, yet it has been
known for years now that the P. aeruginosa population in pwCF is usually
clonally derived but heterogenous. A personalised microbiome would
capture all of these variants for each of the species present. However, and as
noted above, current ASM formulations do not permit the growth of many
CF-associated species, and we still have much to learn about what additives
will be required to overcome this. Nevertheless, a captured personal CF
microbiome would enable facile testing of drug combinations that might
target the key pathogens but maintain microbial diversity, thereby bene-
fitting the patient. By comparison, at present, clinical treatment choices are
still largely empirical.
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2.3 Chronic wound models
Recent years have also seen the development of several in vitro chronic wound
models. Perhaps the most widely used “base model” is the Lubbock chronic
wound biofilm model (Diban et al., 2023). Here, a blood/plasma-based
medium is employed that readily coagulates and enables facile polymicrobial
growth of several wound-associated species, such as P. aeruginosa, S. aureus, and
Enterococcus faecalis (Diban et al., 2023). Recently, the recipe has been
improved, to yield chronic wound medium (CWM). This medium uses
human blood ingredients and is enriched in keratinocyte debris – designed to
optimally simulate the biochemical environment of wounds (Pouget et al.,
2022). But having the right chemical environment (through judicious choice
of growth medium) is only part of the solution; the wound microenvironment
is also spatially heterogenous. To address this, Thaarup et al. (2023) employed a
layered collagen-based scaffold that structurally simulates mammalian wound
tissue. The model was able to stably maintain P. aeruginosa and S. aureus over
many days, and enabled testing of potential therapeutic interventions.

2.4 Ex vivo models
In the realm of chronic wound and CF research, ex vivo models, particularly
those using porcine tissue, have gained increasing prominence. These models
have been instrumental for studying infection dynamics, albeit pre-
dominantly in mono-species experiments. An ex vivo porcine lung model has
been developed to examine the growth, virulence, and signalling mechan-
isms of P. aeruginosa and S. aureus in a CF context (Harrison et al., 2021;
Sweeney et al., 2021). However, and although the use of lung tissue is
anthropocentrically appealing in the context of CF, we do wonder whether
there is anything special about this particular tissue; would any cut of meat
do? After all, P. aeruginosa is known to have a predilection for soft tissues
generally. In a different application of porcine models, porcine skin explants
have been used to model biofilms in chronic skin wounds, and Regan,
Taylor, and Karunakaran (2022) have used ex vivo ovine skin for similar
purposes (Lorenz et al., 2023). Bringing this general approach to its inevitable
and logical conclusion, Yoon et al. (2019) have described how human
abdominal skin (excised during cosmetic procedures) can be used as a
chronic wound model, although in their case, this was a monospecies model
employing only S. aureus. Nevertheless, they noted that biofilm formation
on the skin was accompanied by increased expression of pro-inflammatory
genes, exactly as in chronic wound infections.
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The current landscape of ex vivo models, while advanced, has not been
specifically tailored for polymicrobial studies. There are some exceptions to
this, albeit not explicitly focused on the microbiology of the system
(Dumigan et al., 2019; Oates, Lindsay, Mistry, Ortega, & McBain, 2018;
Phan et al., 2020). We suspect that there is a significant opportunity to
adapt these ex vivo models to investigate the polymicrobial communities
derived from CF or wound samples.

2.5 Invertebrate models
Caenorhabditis elegans is a widely used laboratory organism that has been
developed as a model host organism for pathogenic bacteria and fungi
(Powell & Ausubel, 2008). C. elegans-based models have been employed to
study P. aeruginosa, C. albicans and S. epidermidis, both in isolation and in
combination (Holt, Houston, Adams, Edwards, & Kjellerup, 2017). A
major benefit of C. elegans is its apparent potential to be understood at a
‘phenomic’ level such that physiological processes can be interrogated
holistically and understood deterministically (Rossi, Falcone, Molin, &
Johansen, 2018).
Galleria mellonella larvae have equally gained popularity as a model due to

their accessibility, cost-effectiveness, and compatibility with a range of tem-
peratures including 37 °C – an option that is not available for Drosophila mel-
anogaster or C. elegans models (Andrea, Krogfelt, & Jenssen, 2019; Fedhila et al.,
2010). The Galleria innate immune system shares similarities with that of
mammals, offering insights into conserved immune responses (Lange et al.,
2018). The model is also a flexible one; for example, Maslova et al. (2020) have
introduced a G. mellonella burn wound model. However, a limitation with
G. mellonella is the comparative paucity of genetic tools, large-scale databases
and standardised procedures (Serrano, Verdial, Tavares, & Oliveira, 2023).
D. melanogaster emerges as the most promising invertebrate model for

polymicrobial infection research, thanks to the extensive genetic tools
available for creating disease-mimicking mutations, and the conservation of
physiology and cell biology between Drosophila and humans (Apidianakis &
Rahme, 2009; O’Brien & Welch, 2019). Reports of successful S. aureus
and P. aeruginosa co-infection models in Drosophila highlight its potential
for shedding light on interspecies interactions and their underlying
mechanisms (Korgaonkar, Trivedi, Rumbaugh, & Whiteley, 2013; Lee
et al., 2020; Sibley et al., 2008). Leveraging the conservation of immune
signalling processes may allow insights to be gleaned as to how the human
immune system responds to polymicrobial infection, and perhaps even to
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uncover phenomena as opaque as the apparently “spontaneous” acute
episodes (exacerbations) which punctuate the life of many chronically-
infected patients.

2.6 Vertebrate models
Vertebrate CF models tend to be used to study colonisation and infection of
the lung, with inoculation typically taking intratracheal or intravenous routes
(Lebeaux, Chauhan, Rendueles, & Beloin, 2013). Although mouse models
are commonly-used to study pulmonary infections, including those pertinent
to pwCF, they are limited insofar as mice carrying CFTR mutations do not
exhibit a lung phenotype (McCarron, Parsons, & Donnelley, 2021). How-
ever, β-ENaC mice – those with deficient epithelial sodium channels – can
be used as an alternative, as they do display a CF-like lung phenotype
(McCarron et al., 2021). Alternatively, animal models such as CF ferrets,
rabbits, pigs, sheep, and rats may offer pulmonary phenotypes more com-
parable to humans (Birket et al., 2018; Cho et al., 2018; Fan et al., 2018;
Stoltz, Meyerholz, & Welsh, 2015; Sun et al., 2014). The simple con-
founding fact remains, however, that animal microbiomes are naturally
distinct from those of humans, suggesting that the lung environment in these
models is intrinsically different. Humanised microbiome mouse models may
bridge this gap, though their utility in CF research remains to be seen
(Fiorotto et al., 2019).

Despite the numerous animal models available, very few have been
adapted/applied to investigate polymicrobial infections; the primary emphasis
to date has always been to investigate wound healing. Dorsett‐Martin (2004)
developed an in vivo polymicrobial, biofilm-related infected wound model,
which entailed transplantation of diverse multispecies aggregates grown in
vitro onto fresh wounds. Those wound infections sustained diversity across
four of the bacterial species examined throughout the experimental time-
frame. Crucially, the data indicate multispecies biofilm infections impair
wound healing compared with mono-species infections (Dalton et al., 2011).

Despite these and other advances, the challenge of developing an ideal
animal model for studying human chronic wounds persists (Tan, Chin,
Madden, & Becker, 2023). A key issue is the simple fact that most non-
human animals do not apparently suffer from chronic wounds themselves.
Consequently, a large inoculum of bacteria is required to establish an
infection, thereby risking systemic infection and death (Pletzer, Mansour,
Wuerth, Rahanjam, & Hancock, 2017). In cases where localised wound
infections are attained, they only last for days to weeks – a time-frame that
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does not capture the complex evolution of host-microbe interactions
associated with human chronic infections (Burmølle et al., 2010; Ganesh
et al., 2015).

Future developments in these models, particularly those incorporating
humanised microbiomes and humanised hosts, hold promise for replicating
human disease states more accurately, thereby enhancing our under-
standing of chronic infections.

3. Imaging: direct observation and heterogeneity

From its foundation at the hand of Antonie Van Leeuwenhoek in the
17th century to the most modern discoveries unlocked by fluorescence,
electron beams and nanoscopic scanning probes, microscopy has been a key
tool in the investigation of microbiology (Binnig, Quate, & Gerber, 1986;
Chalfie, Tu, Euskirchen, Ward, & Prasher, 1994; Heim, Prasher, & Tsien,
1994; Mulvey, 1962; Shimomura, Johnson, & Saiga, 1962). Nevertheless,
the direct observation of in situ and in vivo infections is an extremely chal-
lenging task due to the inaccessibility and opacity of the human body.
Although new techniques, reviewed elsewhere, are attempting to enhance
the visual contrast between microbes within the body, most of our direct
observations come from ex vivo samples, animal models, or lab infection
models (Ordonez et al., 2019). Ex vivo samples of both human and animals
have revealed the intimate relationship between microbes and host cells,
often highlighting a high degree of spatial organisation, indicative of a rich
ecology (Barbosa, Miranda, Azevedo, Cerqueira, & Azevedo, 2023;
Bergström et al., 2016; Hasegawa, Welch, Rossetti, & Borisy, 2017; Johani
et al., 2019; Kim et al., 2020; Lin, Du, Song, Wang, & Yang, 2021; López-
Álvarez et al., 2022; Mark Welch, Rossetti, Rieken, Dewhirst, & Borisy,
2016; Mark Welch, Hasegawa, McNulty, Gordon, & Borisy, 2017; Shi
et al., 2020; Viana, O’Kane, & Schroeder, 2022). In many of these studies,
the different microbial species in ex vivo samples are typically identified
through fluorescence in situ hybridisation, a technique that uses small
fluorescent oligonucleotide probes that uniquely tag specific sequences in the
target organism (Moter & Göbel, 2000). However, these approaches require
fixation steps, which potentially alter the sample and limit observations to
single temporal snapshots (Tropini, Earle, Huang, & Sonnenburg, 2017).

Animal models enable the use of synthetic infective communities,
which can be engineered to express fluorescent proteins. An advantage of
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these models over the ex vivo ones is that infections can be followed
through both in time and space throughout their lifecycle, both on the
surface of the animal, and, with the introduction of transparent animal
models, within the animal (Benard et al., 2012; Hattab, Dagher, & Wheeler
Robert, 2022; Jim et al., 2016; Lopez et al., 2021; Sibley et al., 2008).
However, in both ex vivo and animal model approaches, the experimental
environment is complex and variable-rich, such that teasing apart con-
tributions from single factors can become difficult. By contrast, the simpler
laboratory models of infection may or may not involve the host, although
that simplicity inevitably means that some of the “real” contributions to
infection are sacrificed in order to gain easier access to hypothesis testing.

Recent advancements in the field of organoids are positioning organ-
on-chip approaches at the forefront of developments in microscopy-based
infection studies (Feaugas & Sauvonnet, 2021; Ingber, 2022; Leung et al.,
2022; Shahabipour et al., 2023; Zhao et al., 2022). Albeit still in devel-
opment, these platforms are starting to shed light on topics such as the role
of peristalsis and mechanical forces in gut infections, of surfactant in early
lung infections, and on the protective function of commensals in the colon,
all of which would otherwise be hard to test with other methods
(Gazzaniga et al., 2021; Grassart et al., 2019; Thacker et al., 2020).

4. The extracellular interactome: P. aeruginosa as
micro-architect of the lung

Over much of the period since the advent of axenic culture tech-
nique, microbes have been predominantly considered free-swimming
individuals (despite the fact that some of the earliest descriptions of single-
celled organisms depicted them as multicellular aggregates). Indeed, and as
van Leeuwenhoek noted upon observing a plaque scraped from his own
tooth, “Animals in the scurf of a man’s Teeth are so many that I believe
they exceed the number of Men in a kingdom” (Fred, 1933). Moreover,
evidence of “biofilm-like” aggregates of microbial cells can be observed in
fossils dating from as far back as 3.4 billion years (Cavalazzi et al., 2021).
These examples are demonstrative of just how ubiquitous and ancient the
microbial tendency is to grow together in multicellular communities.

A biofilm is often described as a community of sessile cells, with altered
metabolic and phenotypic properties, congregated within a matrix of their
own production. There exists no definitive biofilm, which presents a
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methodological problem for researchers. Rather, the word serves as an
umbrella term to describe a collection of related phenomena and physiolo-
gical states – biofilms are part of a landscape of growth modes demarcated by
somewhat fuzzy boundaries. Perhaps more pertinently, we should appreciate
more the rarity of a monospecies biofilm outside the laboratory environ-
ment. Indeed, biofilms ‘in the wild’ are now considered ecosystems in their
own right, displaying heterogeneity and complexity, at all levels (Dar, Dar,
Cai, & Newman, 2021; Jo, Price-Whelan, & Dietrich, 2022; Wimpenny,
Manz, & Szewzyk, 2000; Wolcott, Costerton, Raoult, & Cutler, 2013).

Advances in our understanding of biofilms have come thick and fast in
the investigation of P. aeruginosa and its co-habitants in the CF lung
environment. Developments in microscopy have allowed a more sophis-
ticated model of the ‘in vivo biofilm’ to be developed, which eschews the
substratum-bound description of biofilms in favour of aggregated micro-
colonies suspended in mucus (Bjarnsholt et al., 2013). However, even with
these improvements, it is still not clear what a biofilm in situ in the lung
actually looks like. Without this understanding, clinical problems associated
with such would-be ‘polyspecies in pulmone biofilms’ may be hard to tackle.

What is clear is that as a key pathogen and active denizen of the diseased
lung, P. aeruginosa interferes with its neighbours, and ‘terraforms’ the host
environment, driving a shift in the virulence profile of the entire microbial
ecosystem. Commensurate with this notion, P. aeruginosa has evolved to secrete
a wide range of extracellular substances that modify its environment. For
example, some of P. aeruginosa’s most characteristic biochemistry lies in its
pigmentation. Phenazines (mobile electron carriers) are deployed by the
organism to move electrons (a necessary byproduct of oxidative metabolism)
from environments where electron acceptors are scarce – such as the interior of
a biofilm – to the more oxygenated periphery (Wang, Kern, & Newman,
2010). The same small molecules can also serve as virulence factors, which
aggravate host tissue inflammation and inhibit competing microbes (Grahl,
Kern, Newman, & Hogan, 2013; Hunter et al., 2012). Intriguingly, these
redox-active molecules also appear to be involved in inter-cellular signalling.
Indeed, phenazine-dependent stimulation of oxidative-stress-related pathways
in co-habiting Aspergillus species has been shown to influence the morphology
of those fungi (Zheng et al., 2015). Consequently, secreted factors represent not
only specific contributors towards P. aeruginosa’s fitness in the lung (and other)
environment(s); they are also directly involved in the microbial melée that
characterises the airway mucosa (Kang, Xu, & Kirienko, 2024; Meyer, Neely,
Stintzi, Georges, & Holder, 1996; Recinos et al., 2012; Schiessl et al., 2019).

The past, present and future of polymicrobial infection research 279



P. aeruginosa also produces a welter of pigmented iron-chelating siderophores.
These not only control iron availability – they also affect the efficacy of clinical
interventions. A nice example of this is that antifungal drugs are more effica-
cious in conditions where siderophore activity has scrubbed the airway
environment clean of iron (Hattab et al., 2022). P. aeruginosa’s engagement in
the secretion economy therefore has unanticipated consequences.

We define the extracellular interactome of P. aeruginosa as the collection
of secreted molecules that influences the interaction of the bacterium with
other species around it. In terms of understanding, we are only just
scratching the surface of the CF airway-associated extracellular interactome
and often only in snapshots (Nazeer, Wang, & Welch, 2023). The extra-
cellular interactome likely evolves over the course of infection, driven by
shifting transcriptional programs and genotypic changes, the unfolding of
which culminates in ‘pathoadaptation’ (Diaz Caballero et al., 2015; Jurado-
Martín, Sainz-Mejías, & McClean, 2021; Rossi et al., 2018). In this regard,
and although there are now large lists of pathoadaptive genes for P. aeru-
ginosa, we know much less about genetic pathoadapation in the co-habiting
species.
P. aeruginosa has been demonstrated to acquire a number of mutations

during longitudinal infection of the lung. For example, mutations affecting
the LPS O-antigen have been found, in vitro, to alter cell aggregation in
such a manner that P. aeruginosa appears to physicochemically separate itself
from other species (Azimi et al., 2021). The organism has also been
observed to dynamically modify its secreted proteome. Such modification
includes post-translational modifications on secreted proteins, as well as
more irreversible alterations, such as proteolysis, with wide-ranging effects
on inter-microbial relations, host-pathogen interactions and biofilm
structure (reviewed recently by Forrest & Welch, 2020). These mod-
ifications to the secretome have functional consequences; along with many
other bacteria, P. aeruginosa methylates EF-Tu, a ribosomal elongation
factor, in a manner that has no discernible effect on translation but which
improves adhesion of the biofilm to respiratory epithelia and consequently
augments virulence (N’Diaye et al., 2019). This example serves to
demonstrate that subtle chemical changes made to intracellular proteins can
lead to a ‘moonlighting’ extracellular role. Presumably, such nominally
“cytoplasmic” proteins escape and populate the cell matrix through
explosive cell lysis (Turnbull et al., 2016). Post-translational modification
has also been proposed as a means to protect the secreted bacterial pro-
teome against the wealth of lytic enzymes that occupies the extracellular
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space (Forrest & Welch, 2020). A similar strategy can be seen with the
biofilm cohesion protein CdrA, which is stabilised against proteolysis by its
interaction with exopolysaccharides (Reichhardt, Wong, Passos da Silva,
Wozniak, & Parsek, 2018).

The secreted proteome itself shifts in composition over time – a shift
which alters the metabolism of neighbouring microbes (Margalit, Sheehan,
Carolan, & Kavanagh, 2022). The majority of extracellular virulence fac-
tors of P. aeruginosa are understood to be secreted by Type II secretion,
through one or both of the main terminal branches, termed the Xcp and
Hxc secretons (Ball, Durand, Lazdunski, & Filloux, 2002; Bally et al.,
1992). Interestingly, there exists a pair of orphan accessory proteins, XphA
and XqhA, which can form a chimeric secreton assemblage with the Xcp
proteins (Michel, Durand, & Filloux, 2007). Expression studies show that,
early in the growth cycle, these two orphan genes are expressed syn-
chronously with most of the Xcp genes. However, later in growth,
expression of two homologs (XcpQ and XcpP) is turned on, displacing the
orphan proteins from the secretion complex. The main apparent change
that accompanies this is one of substrate selectivity – significantly that of
PaAP, an aminopeptidase and virulence factor (Zhao et al., 2018). PaAP, it
turns out, seems to be involved in biofilm remodelling, nutrient cycling
and antibiotic tolerance – suggesting that this shift in the secretome over
the course of the infection could have significant effects on the patho-
physiology of P. aeruginosa (Harding, Bischoff, Bergkessel, & Czekster,
2023). Clearly, there are many levels at which the secreted proteome can
be dynamically and spatially modified by P. aeruginosa.

As noted above, P. aeruginosa can be considered to ‘terraform’ its
environment. Another way in which it does this is by using exopolymers to
establish a microenvironment conducive to survival (Greenwald &
Wolfgang, 2022). P. aeruginosa’s functional amyloid protein, FapC, has a
number of functions, including increasing surface stiffness, hydrophobicity
and cell aggregation (Dueholm et al., 2010; Zeng et al., 2015). The fap
operon is up-regulated in chronic wound and burn infection models, and a
deletion of fapC substantially diminishes virulence in C. elegans, suggesting
importance in infection (Turner, Everett, Trivedi, Rumbaugh, &
Whiteley, 2014; Wiehlmann et al., 2007). Intriguingly, FapC seems not
only to play a structural role per se, but also to stimulate a wholesale shift in
cellular physiology, perhaps constituting a form of pathoadaptation. The
proteome of a fap mutant is significantly different to that of its wild-type
progenitor, with large alterations in the expression of proteins related to
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attachment, biofilm formation, anaerobic metabolism and quorum sensing
(Beg et al., 2023; Herbst et al., 2015). The mechanism by which this
functional amyloid might drive these major proteomic and physiological
shifts towards an infection lifestyle is yet to be determined, although it may
have something to do with the observed interaction between FapC and
quorum sensing molecules, trapping (and therefore intensifying), these QS
signals (Seviour et al., 2015). A more prosaic explanation is simply that the
fap mutants display aberrant aggregation, affecting their global physiology.
Nevertheless, the possibility that production of amyloids by other co-
habiting species may affect the virulence of P. aeruginosa remains an
interesting one (Melnik et al., 2019).

5. Interspecies relations: social and antisocial microbes
in infection

The last few decades have revealed remarkable insights into how
microbes communicate with one another, and how certain ‘shibboleth
molecules’ facilitate communication that bridges microbial ‘tribes’. A
common theme in the relations of most microorganisms that co-habit the
human body is that they have the capacity to do one another good and
harm in equal measure. It is hardly surprising that, faced with the existential
threats of the immune system and antibiotic intervention, organisms have
co-evolved to band together when times are tough but, otherwise, will
seek to gain an advantage when an opportunity arises. In this section, we
trace the frontiers of our understanding of these ambivalent microbial
relations.

5.1 Bacterial interactions
5.1.1 P. aeruginosa and S. aureus
Investigation of the relationship between P. aeruginosa and S. aureus con-
tinues to reveal an extensive and complex network of interactions, associated
with both peaceful coexistence and fierce rivalry. These divergences high-
light the polyvalent character of the relationship between the two pathogens,
sensitive to factors such as population diversity, clinical conditions, and
environmental challenges. However, we also note that the interactions
between S. aureus and P. aeruginosa, in both the CF airways and in chronic
wounds, can be strain-specific, predominantly driven by inter-strain variation
in the P. aeruginosa (Bernardy et al., 2022; Ibberson & Whiteley, 2020).
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Gram-positive bacteria, including S. aureus, stimulate P. aeruginosa to up-
regulate virulence gene expression (Korgaonkar et al., 2013; Rickard et al.,
2006). In mixed cultures, P. aeruginosa detects N-acetyl glucosamine
(GlcNAc) derived from the peptidoglycan of S. aureus cell walls, prompting
the production of the Pseudomonas Quinolone Signal (PQS). The latter
controls the expression of virulence factors such as pyocyanin, elastase, and
2-heptyl-4-hydroxyquinoline N-oxide (HQNO) (Korgaonkar et al., 2013).
Intriguingly, P. aeruginosa mutants lacking the peptidoglycan-sensing gene,
agtR, are less effective at outcompeting S. aureus, so this ecological story
likely has more to offer (Korgaonkar et al., 2013).

HQNO, in turn, is known to interfere with oxidative respiration in
S. aureus by inhibiting its cytochrome bc1 complex (Hazan et al., 2016).
Sufficient concentrations of HQNO can lead to cell lysis, whereas lower,
sub-lytic levels trigger a shift towards fermentative metabolism and lead
to a number of changes in the S. aureus phenotype (Barraza & Whiteley,
2021; Hazan et al., 2016). HQNO can therefore both stymie biofilm
development and spatial ordering, and inhibit cell growth in biofilms
(Barraza & Whiteley, 2021; Gomes-Fernandes et al., 2022; Ibberson &
Whiteley, 2020; Oluyombo, Penfold, & Diggle, 2019; Orazi & O’Toole,
2017). HQNO – whose production is strongly strain-dependent – pro-
motes formation of the small-colony variants (SCVs) that are commonly
associated with clinical samples (Hoffman et al., 2006; Mitchell et al.,
2010). These SCV strains, characterised by defects in their electron
transport systems, are less susceptible to P. aeruginosa-mediated killing
compared with their non-SCV counterparts, suggesting a potential sur-
vival strategy during co-habitation (Filkins et al., 2015). Interestingly,
Yang et al. (2011) found that mutations in P. aeruginosa’s mucA and rpoN
genes diminish S. aureus microcolony formation, effectively cloaking
P. aeruginosa to S. aureus and conferring a competitive advantage in two-
species biofilms.

HQNO “signalling” between P. aeruginosa and S. aureus can also lead to
altered antibiotic tolerance (DeLeon et al., 2014; O’Brien et al., 2022). It
has been found that secretion of HQNO by P. aeruginosa, bolsters S. aureus
resistance to tobramycin by preventing uptake of the antibiotic (Hoffman
et al., 2006; Radlinski et al., 2017). This enhanced phenotypic resistance to
antibiotics of SCVs is noted by several other studies (Biswas & Götz, 2022;
Hammer Neal et al., 2014; Kahl, Becker, & Löffler, 2016). Conversely,
S. aureus can make P. aeruginosa more susceptible to ciprofloxacin and
aminoglycosides (Trizna et al., 2020).
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In parallel developments, Mashburn, Jett, Akins, and Whiteley (2005)
showed that S. aureus can act as an iron donor to P. aeruginosa during
co-culture, evidenced by reduced expression of the iron regulon in P. aeru-
ginosa. Another dimension of the iron economy was illuminated by Bisht,
Baishya, and Wakeman, who show that under iron scarcity, P. aeruginosa
ramps up the production of quinolones, which, in turn, lyse S. aureus cells,
releasing iron for P. aeruginosa’s use (Bisht, Baishya, & Wakeman, 2020).
Additional strategies by which P. aeruginosa suppresses S. aureus growth have
been reviewed elsewhere (Al-Wrafy, Alariqi, Noman, Al-Gheethi, &
Mutahar, 2023; Biswas, Biswas, Schlag, Bertram, & Götz, 2009).

The host can also mediate the P. aeruginosa – S. aureus relationship, directly
or indirectly. For example, P. aeruginosa can indirectly impact S. aureus by
modulating the human immune response, stimulating production of the
phospholipase sPLA2-IIA by bronchial epithelia cells (Pernet et al., 2014). This
phospholipase kills S. aureus. Remarkably, a Type VI secretion system (T6SS),
typically associated with targeting Gram-negative and eukaryotic cells, has been
shown to give P. aeruginosa a competitive edge over S. aureus, with the potential
to inadvertently harm the host during co-infection (Wang et al., 2023).

However, P. aeruginosa does not always get everything its own way. For
example, exogenous P. aeruginosa-derived alginate has been shown to promote
the survival of S. aureus, suggesting that mucoid P. aeruginosa is more tempered
in its engagements with its neighbour (Limoli et al., 2017; Price et al., 2020).
Moreover, when exposed to glucose, S. aureus secretes compounds capable of
effectively eliminating P. aeruginosa in a dose-dependent manner. These
compounds include acetoin, acetic acid, and possibly small peptides (Kvich
et al., 2022; Vasiljevs, Gupta, & Baines, 2023). Interestingly, recent work also
suggests that P. aeruginosa and S. aureus coevolve within the CF lung, since
S. aureus isolates show greater in-host survival when P. aeruginosa is present
(Bernardy et al., 2022).

The above notwithstanding, the ongoing and nuanced conversation
between P. aeruginosa and S. aureus during co-infections allows sustained
microbial colonisation and has a profound impact on the host (Alves et al., 2018;
Wang et al., 2023). The polyvalence of P. aeruginosa’s attitude towards S. aureus
seems largely contingent on the specific particularities of genetic backgrounds
and environmental conditions, although it is clear that cooperation and antag-
onism between these two species is common during coinfection, and has
implications for antibiotic susceptibility, bacterial burden and clinical outcome
(Fischer et al., 2021; Hotterbeekx, Kumar-Singh, Goossens, & Malhotra-
Kumar, 2017; Suryaletha, John, Radhakrishnan, George, & Thomas, 2018).
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5.1.2 The other neighbours of P. aeruginosa
Interactions between P. aeruginosa and emerging pathogens like Achromobacter
spp. present a complex dynamic of both competition and coexistence in
chronic co-infection scenarios (Sahl, Baumgarten, Shannon, & Påhlman,
2023; Sandri et al., 2021). Achromobacter spp. can secrete exoproducts that
interfere with the adhesion ability and biofilm formation of P. aeruginosa
strains. These interactions are not static but can shift and evolve over the
course of a chronic infection (Menetrey, Dupont, Chiron, Jumas-Bilak, &
Marchandin, 2020; Sandri et al., 2021). Achromobacter xylosoxidans (and other
species, such as P. aeruginosa and S. aureus) have been shown to affect the
growth, motility, and antibiotic susceptibility of Stenotrophomonas maltophilia
(McDaniel, Schoeb, & Swords, 2020; Menetrey et al., 2020; Pompilio et al.,
2015). Interestingly, this growth inhibition is not observed with P. aeruginosa
supernatants alone, indicating a contact-dependent inhibitory mechanism
(Tashiro, Yawata, Toyofuku, Uchiyama, & Nomura, 2013). Co-culturing of
S. maltophilia with P. aeruginosa also leads to changes in the expression of
several virulence genes in the latter, with an increase in protease and alginate
production and a decrease in quorum sensing activity (Menetrey et al., 2020;
Pompilio et al., 2015). Perhaps more surprisingly, S. maltophilia can mitigate
the effects of toxic P. aeruginosa-derived metabolites such as hydrogen cya-
nide on Burkholderia cenocepacia. This further reinforces the notion that there
is much to learn about the complex network of interactions in polymicrobial
infections scenarios (Bernier et al., 2016). In this regard, a recent in vivo study
suggests that S. maltophilia and P. aeruginosa co-localise in a mouse pulmonary
infection model, and that the two species can readily form mixed biofilms,
indicative of a synergistic interaction (McDaniel et al., 2020).

Anaerobes like Porphyromonas and Prevotella are also being increasingly
recognised for their potential roles in chronic infections, including those
associated with CF and bronchiectasis (Sherrard et al., 2016). The hypothesis
that certain anaerobes may foster environments conducive to colonisation by
more “notorious” CF pathogens has gained traction, and is indicative of a
more complex microbial interplay within the CF lung than previously
appreciated (Quinn et al., 2015). For instance, co-infections involving
P. aeruginosa and Veillonella parvula in a murine model have revealed a marked
increase in P. aeruginosa loads, highlighting the synergistic potential of
anaerobic bacteria in promoting pathogenicity (Pustelny et al., 2015).
Similarly, the virulence of obligate anaerobes such as Porphyromonas gingivalis
appears to be heightened in the presence of P. aeruginosa-derived pyocyanin
(Benedyk et al., 2015). Interestingly, the lung “anaerobiome” has been
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linked with elevated resistance to certain antibiotics (Lamoureux et al.,
2021). This points to underexplored community relations in the lung
microbiota, where anaerobes impact the course of chronic lung infections
and the efficacy of treatment strategies.

5.2 Interkingdom interactions: bacteria and fungi
Interkingdom interactions, particularly between bacteria and fungi, also
exhibit contact-dependent communication, extracellular signalling, and
metabolic inter-dependencies (Rapala‐Kozik et al., 2023). Such relations
can profoundly influence biofilm architecture, and therefore virulence and
antibiotic susceptibility (Du, Ren, Zhou, Zhang, & Xu, 2022). A sig-
nificant portion of research in this area has focused on the interplay
between fungi such as C. albicans or A. fumigatus and prevalent bacterial
pathogens such as P. aeruginosa or S. aureus.

5.2.1 Interactions between C. albicans and P. aeruginosa
The dynamics between C. albicans and P. aeruginosa showcase both synergistic
and antagonistic effects (Fourie et al., 2017; Fourie, Cason, Albertyn, & Pohl,
2021; Nogueira, Sharghi, Kuchler, & Lion, 2019). Several studies have
demonstrated that the transition between yeast and hyphal forms of C. albicans
is significantly influenced by P. aeruginosa. As Hogan and Kolter (2002)
observed, P. aeruginosa targets and eradicates the hyphal cells of C. albicans,
sparing the yeast form. Among the molecular signals involved in this, 3-oxo-
C12 homoserine lactone, a QS molecule produced by P. aeruginosa, stands
out for its ability to inhibit C. albicans filamentation without impeding fungal
growth (Hogan, Vik, & Kolter, 2004; Ovchinnikova, Krom, Van Der Mei,
& Busscher, 2012). Critically, this inhibition of hyphae formation reduces the
capacity of C. albicans for tissue adhesion and invasion (Maza et al., 2017).
P. aeruginosa also suppresses biofilm formation by C. albicans, in a manner

dependent on the Pseudomonas quinolone signal (PQS) and its precursor,
HHQ. PQS prompts the release of phenazines, which trigger ROS forma-
tion, thereby also disrupting fungal biofilm integrity and hyphal development
(Kaleli, Cevahir, Demir, Yildirim, & Sahin, 2007; Phelan et al., 2014; Reen
et al., 2011). Interestingly, phenazines also synergise the activity of azole-
based antifungals (Nishanth Kumar et al., 2014). Conversely, secreted pseu-
domonal proteases such as LasB unexpectedly stimulate fungal virulence
(Peleg, Hogan, & Mylonakis, 2010).

Two-species biofilms containingC. albicans and P. aeruginosa are thicker and
alginate-rich (Kasetty et al., 2021; Phuengmaung et al., 2020). Furthermore,
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proteomic analysis of these mixed biofilms revealed altered expression of pro-
teins related to virulence, multidrug resistance, and stress response (Trejo-
Hernández, Andrade-Domínguez, Hernández, & Encarnación, 2014).
C. albicans’ secretions, including farnesol, tyrosol and eicosanoids, influ-

ence both growth and biofilm formation by P. aeruginosa. Farnesol not only
hampers pyocyanin production and rhamnolipid-mediated swarming, but
also broadly dampens the virulence of P. aeruginosa (Cugini et al., 2007;
Hassan Abdel-Rhman, Mostafa El-Mahdy, & El-Mowafy, 2015; McAlester,
O’Gara, & Morrissey, 2008). Similarly, tyrosol curtails the secretion of
P. aeruginosa haemolysin and protease(s) (Hassan Abdel-Rhman et al., 2015).
Eicosanoids, such as prostaglandin E2 (PGE2), are secreted by Candida spp.
And may serve as immunomodulatory agents in bacterial-fungal dialogues,
influencing the progression and outcome of mixed microbial infections
(Fourie et al., 2016; Fourie et al., 2017).

Research outcomes significantly hinge on the choice of model systems and
experimental conditions. A recent meta-analysis indicated that subtle differences
in the timing of sampling, media composition, and experimental setup can
drive divergent results, which needs to be borne in mind (Grainha, Jorge,
Alves, Lopes, & Pereira, 2020; Kahl et al., 2023; Santos-Fernandez et al., 2023).

5.2.2 Interactions between C. albicans and S. aureus
Compared with P. aeruginosa, the interplay between S. aureus and Candida
spp. tends towards a more synergistic relationship (Durand et al., 2022; Short
et al., 2023). In mixed biofilms, S. aureus adheres to C. albicans hyphae via the
fungal adhesin, Als3p, and uses fungal structures as a scaffold for growth and
deeper tissue invasion (Kean et al., 2017; Peters et al., 2012; Peters, Ward,
Rane, Lee, & Noverr, 2013). This symbiosis not only increases the biofilm
biomass but also enhances the biofilm’s antimicrobial tolerance – perhaps due
to an enrichment of extracellular matrix (Harriott & Noverr, 2011; Kean
et al., 2017; Pammi, Liang, Hicks, Mistretta, & Versalovic, 2013; Peters
et al., 2019; Vila et al., 2021). Moreover, C. albicans stimulates the S. aureus
agr QS system, boosting toxin production and amplifying virulence (Todd
et al., 2019). However, C. albicans-derived farnesol can also disrupt S. aureus
biofilm development, once again illustrating that these interactons are not
always one-way (Jabra-Rizk, Meiller, James, & Shirtliff, 2006).

5.2.3 Interactions between C. albicans and Streptococcus species
The chronic wound microbiome features a notable abundance of Streptococcus
species, especially Streptococcus agalactiae, which interfaces with C. albicans
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(Smith et al., 2016). A spectrum of behaviours has been attributed to the
interaction between S. agalactiae and C. albicans, again, suggesting a multi-
dimensional relationship (Short et al., 2023). Some studies indicate that
S. agalactiae can suppress C. albicans hyphal growth (Yu et al., 2018). Given
that the yeast form of C. albicans displays reduced immunogenicity (cf. the
hyphae) this might favour chronic wound colonisation. By contrast, other
studies have shown that C. albicans can promote S. agalactiae colonisation,
suggesting that a more symbiotic relationship is involved in enhancing
colonisation and virulence (Pidwill, Rego, Jenkinson, Lamont, & Nobbs,
2018; Shing et al., 2020).

5.2.4 Interactions between A. fumigatus and P. aeruginosa
In the CF lung, P. aeruginosa often plays a dominant role in its relationship
with A. fumigatus, employing an array of secretions, including phenazines,
pyoverdine and rhamnolipids to suppress fungal growth (Briard et al., 2015,
2017). Again though, not all studies are consistent on this point, and phe-
nazines have also been shown to mobilise environmental iron, thereby
nourishing A. fumigatus (Nazik, Sass, Déziel, & Stevens, 2020). Moreover,
the exoproducts of P. aeruginosa can influence A. fumigatus protein expres-
sion, affecting the synthesis of secondary metabolites like gliotoxin and the
fungal response to oxidative stress (Margalit et al., 2022). Remarkably (given
the inter-kingdom nature of the interaction), Penner et al. (2016) have
suggested that P. aeruginosa also employs phage-mediated strategies to curb
metabolic activity in established biofilms of A. fumigatus.

5.2.5 Interactions between A. fumigatus and others
Co-cultivation studies between S. aureus and A. fumigatus conidia have
revealed a predominantly antagonistic relationship, with S. aureus demon-
strating a competitive advantage over the fungus. In these interactions, the
S. aureus cells not only adhere to the fungal conidia but also facilitate
aggregation of additional bacterial cells to the site, effectively inhibiting
fungal growth. The presence of S. aureus on the fungal surface prior to
conidial germination is crucial for this conidial lysis and disruption of hyphal
development (Ramírez Granillo et al., 2015).
Streptococcus pneumoniae (a Gram-positive species primarily known for

causing pneumonia and sepsis among the elderly and children) also appears
in the airways of pwCF, and has been linked with pulmonary exacerbation
episodes (Askim et al., 2016; Asner et al., 2019; Bhatt, 2013; Maeda et al.,
2011; Paganin et al., 2015). S. pneumoniae has been shown to inhibit the
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growth of A. fumigatus and to dismantle pre-formed fungal biofilms in vitro;
a process mediated by the production of bacterial pneumolysin and
hydrogen peroxide (Iwahashi, Kamei, & Watanabe, 2020).

Mixed biofilms of Stenotrophomonas maltophilia and A. fumigatus have
been reported in the airways of pwCF, although again, we caution the
reader that the definition of “biofilms” in these samples is largely an
observational interpretation. Nevertheless, the fungal morphology in these
aggregates is notably affected (Margalit, Carolan, Sheehan, & Kavanagh,
2020; Melloul et al., 2016). Moreover, the antimicrobial susceptibility of
both organisms is affected in these samples; A. fumigatus shows increased
sensitivity to amphotericin B, whereas S. maltophilia exhibits enhanced
tolerance to levofloxacin (Melloul et al., 2018; Roisin et al., 2020).

5.3 The diverse forms of interspecies communication
Cell-to-cell signalling is a major requirement for social behaviour in the
microbial world, and recent discoveries have raised an awareness of the
extent and importance of interspecies communication (Banerji, Kanojiya,
& Saroj, 2020; He et al., 2023).

QS in Gram-negative proteobacteria employs small diffusible signalling
molecules, such as N-acylated homoserine-lactones (HSL), alkylquino-
lones, fatty acid-like compounds (also known as diffusible signal factor
(DSF), and α-hydroxyketones) (Hawver, Jung, & Ng, 2016; Ng & Bassler,
2009; Tiaden, Spirig, & Hilbi, 2010). These freely-diffusible molecules
bind directly to cognate receptor molecules (transcription factors) in the
cytoplasm which, in turn, bind to target DNA. On the other hand, Gram-
positive bacteria primarily use modified oligopeptides that are impermeable
to biological membranes and are recognised by a two-component mem-
brane-bound receptor (Ng & Bassler, 2009).

For some species, it has been shown that “orphan” receptors can bind and
engender a response to exogenous signalling molecules in a process referred
to as “eavesdropping” (Banerji et al., 2020; Case, Labbate, & Kjelleberg,
2008). For example, eavesdropping has been observed for the DSF quorum
sensing system. DSF signals include a diverse group of cis-2-unsaturated fatty
acids with varying lengths and branching patterns (Ryan, An, Allan,
McCarthy, & Dow, 2015). Until now, the genes related to DSF biosynthesis
have been found only in Gram-negative bacteria from the γ- and β-pro-
teobacteria groups (He et al., 2023). However, these molecules appear to be
sensed by a much wider range of microbes, even participating in inter-
kingdom signalling (reviewed recently by He et al., 2023). In a notable
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example of DSF-mediated communication, cis-2-decenoic acid produced by
P. aeruginosa induces not only its own biofilm dispersal, but also that of other
bacteria and of C. albicans (Davies & Marques, 2009; Jennings, Courtney, &
Haggard, 2012). Additionally, it has also been shown that cis-2-decenoic acid
inhibits S. aureus growth (Jennings et al., 2012).

Perhaps the best studied example of inter-species eavesdropping is
associated with autoinducer 2 (AI-2), a furanosyl borate diester synthesised
by LuxS in both Gram-positive and Gram-negative bacteria (Cao &
Meighen, 1989; Miller & Bassler, 2001; Schauder, Shokat, Surette, &
Bassler, 2001). The involvement of AI-2 in inter-species communication
was first suggested by Duan, Dammel, Stein, Rabin, and Surette (2003),
who showed that in a murine “chronic lung infection” model, lung
damage by P. aeruginosa infection was enhanced by the presence of
avirulent microflora. These microflora stimulated the expression of a similar
set of genes as AI-2 (Duan et al., 2003). Notably, P. aeruginosa does not
encode luxS, and consequently, does not itself produce AI-2, yet these data
indicate reception of exogenously-synthesised AI-2 (Pereira, Thompson, &
Xavier, 2013; Stover et al., 2000). It was subsequently shown that AI-2
signalling integrates into the P. aeruginosa las signalling system, and thus
encourages expression of a wide range of virulence factors (Li et al., 2017).
Interestingly, there are two well-characterised receptors of AI-2, LuxP and
LsrB, yet P. aeruginosa does not encode homologues of these either.
Recently, two additional potential AI-2 receptors have been identified
(Zhang et al., 2020). These periplasmic proteins are widespread in nature
and may indicate that AI-2 signalling is essentially universal (Zhang et al.,
2020). Interestingly, AI-2 signalling seems to promote biofilm formation
by a certain ‘tribe’ of colonising microbes (E. coli, Porphyromonas gingivalis,
Streptococcus spp., P. aeruginosa), but inhibits biofilm formation by others
(Candida albicans, Bacillus cereus). AI-2 is a good example of a potential
‘shibboleth’ signal, in whose decoding the fate of the lung environment is
determined (Auger, Krin, Aymerich, & Gohar, 2006; Bachtiar et al., 2014;
Cuadra-Saenz et al., 2012; González Barrios et al., 2006; Yoshida, Ansai,
Takehara, & Kuramitsu, 2005).

Given the overwhelmingly complex and varied experimental findings
concerning inter-microbial relations, two things are clear: (i) that proper
interpretation of these data requires an awareness of the peccadillos asso-
ciated with specific experimental regimes, and (ii) that theoretical models
describing these data must accommodate the polyvalence of microbial
politics.
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6. Understanding the ecology of inter-species
interactions: computational approaches and
perspectives

Experimental investigation remains the gold standard approach for
understanding the mechanistic basis for inter-species interactions.
However, in order to truly understand ecosystems, computational models
are required. Such computational models can capture not only the eco-
logical interactions between species, but also allow modelling of more
complex properties of polymicrobial infections. For example, it is now
becoming clear that polyspecies interactions in one organ can influence
other systems in the body. A good example of this is the so-called gut-lung
axis (O’Toole et al., 2021). Computational approaches are well-suited to
analysing problems of this sort.

Ho et al. (2023) recently used computational approaches to tease apart
the impact of key medications on the ecology of the CF airway microbiota.
In a similar vein, McKay et al. (2023) have used computational approaches
to segregate the microbiota associated with pwCF and healthy control
subjects (McKay et al., 2023). Both of these analyses started off with the
“messy” real-world clinical records of several thousand individuals, yet
demonstrated not only that patterns could be extracted, but also generated a
number of experimentally-testable hypotheses. With finer data granularity,
such models can only improve. Indeed, with the wealth of metagenomic
data available now, we anticipate that such modelling will become routine
(or even, de rigueur) in future analyses.

6.1 The joys and miseries of ‘curated’ databases
There exist a number of microbiological and clinical databases which the
infection modeller can mine for data. These open access biological data-
bases include the National Center for Biotechnology Information (NCBI),
Human Microbiome Project, Integrated Microbial Genomes and
Microbiomes, European Nucleotide Archive, and EnsemblBacteria
(Harrison, 2007; Nayfach et al., 2021; Sayers et al., 2022; Turnbaugh et al.,
2007; Yates Andrew et al., 2022). The data hosted are predominantly
sequencing data and their accompanying metadata.

In the specific case of CF, most developed countries maintain a cen-
tralised, curated database of all consenting pwCF in that country. For
example, the UK CF Registry maintains records of the CFTR genotype,
sex, annual microbiota culture records, and (anonymized) medication
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history of each patient (Taylor-Robinson et al., 2018). Such a resource is
only possible due to the generosity of the CF community who have given
their consent to contribute to science.

However, these databases are often plagued by curation errors; typo-
graphical errors, inconsistencies in spelling during transcription, and the ple-
thora of digital artefacts which inevitably accompany the assembly of very
large datasets. Moreover, even among good quality data, there exist potential
biases. For instance, in clinical microbiology, the use of selective media means
that often, we only “see” what the investigators were looking for. And even
then, fast-growing/easily cultured species/strains may be disproportionately
represented (Goelz et al., 2021; Sondo, Wonni, Klonowska, Koïta, & Moulin,
2023; Wang et al., 2020). This is why small colony variants escaped investi-
gation for so long. We also note that mucoid variants often swamp the plate,
making enumeration difficult (if not impossible). Data cleaning, even in “well-
curated” databases, is therefore something of a necessity (Ho et al., 2023).

6.2 Mathematical models
Mathematical models describing ecological interactions (Fig. 2) have a long
history, with a classical example being the Lotka-Volterra predator-prey
model (Ho et al., 2023). This model was developed in the mid-19th to

Fig. 2 The polyvalence of ecological relations. Ecological relationships can be sim-
plified to positive, negative and neutral valences, representing an increase or decrease
in population size in the presence of a co-habiting species. Here we show the many
relationships that can potentially arise from the combinations of those valences,
which manifest in both macro- and micro-organisms.

292 Éva Bernadett Bényei et al.



mid-20th century to model lynx-hare dynamics in Canada. [The source
data for the model were sales of lynx and hare pelts by the Hudson’s Bay
Company.] Since that time, a number of other ecological models have
been developed, which have been broadly categorised by Van Den Berg
et al. (2022) into five families: the Lotka-Volterra type, resource-consumer
type, the trait-based type, the individual-based type, and the genome-scale
metabolic model type. Choosing the appropriate type of ecological model
is important, not only because it affects the number and the type of
parameters needed to construct the model, but also because the subject of
the model needs to fit its assumptions.

In the context of CF airway infections, exacerbations have been mod-
elled by the Climax-Attack Model (CAM) (Conrad et al., 2013). CAM
employs two explicitly defined communities, the “attack” (representing
virulent, exacerbation-associated microbiota) and “climax” (representing the
stable microbiota) communities, and implements a generalised LV model to
predict airway microbiota composition following exacerbation. In this
model, each interaction between two microbial categories is explicitly
quantified. That means the type and the intensity of each ecological rela-
tionship is assumed to be known and is kept constant throughout the airway
microbiota succession following exacerbation. Another model, the Island
Biogeography Model (IBM), has been proposed for modelling colonisation
by airway-associated species (Whiteson et al., 2014). This trait-based model
relies on assumptions about both the structure of the airway and the method
of microbial colonisation. The model assumes the airway microbiota are
always sourced from the trachea (upper respiratory tract) and spread towards
the terminal bronchioles. Along the way lie airway “islands”, whose species
richness is determined by (i) the interconnectedness of “islands”, (ii) their
distance from the trachea, and (iii) the valence of species interactions. This
model was found to be an appropriate model to explain airway microbiota
dynamics in young pwCF, but not of pwCF with more progressed disease
(Boutin & Dalpke, 2017). Finally, the “neutral model” was proposed as a
null model (Huang et al., 2011). This individual-based model is purely based
on a probabilistic account of species migration over a grid scenario. The
model assumes that the airway is a large surface of grids initially colonised by
a random microbial species. Following a series of extinction events on
random grid cells, each emptied grid is then immediately recolonised by
another microbe (of the same or different species). The recolonisation event
is based on the distance of the invading microbe from the emptied grid cell,
and the success rate is based on a probability distribution function. However,
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the neutral model has proven to be a poor model, as the predictions are
drastically different from clinical observations (Huang et al., 2011). Never-
theless, the CAM, IBM and neutral models all share one critical similarity:
they assume ecological interactions between two microbial sub-populations
are constant and unchanging in character. This is now known to be
incorrect; even pairwise interactions between a single pair of microorgan-
isms, such as P. aeruginosa and S. aureus, can be mutualistic, predatory,
amensalistic, or competitive, depending on the experimental model being
examined (Reece, Bettio, & Renwick, 2021). Consequently, another
approach is required.

6.3 The current state of the art: rethinking levels of organisation
There is a growing realisation that microbial interactions can be far more
malleable than previously appreciated. Moreover, that our models need to
be somewhat more agnostic and less assumption-based. For example, the
computational study of CF- and wound-associated infections often focus on
the individual ecologies of a few key pathogens, determined to be important a
priori (Frost, Nazareth, Charman, Winstanley, &Walshaw, 2019; Hatziagorou
et al., 2020; Kalan et al., 2019). On the plus-side, the enormous explosion of
available genomic/metagenomic data in recent years is providing the mod-
eller with unparalleled access to fine-grained, and often temporally- and
spatially-resolved data. Indeed, this wealth of resource presents investigators
with a problem of where to look first, and many approaches likely lose
something by dividing up the data. This notwithstanding, several recent
analyses have started to look holistically at treatment and microbiota in the
context of CF and wounds, so progress is being made (Chen, Burgess,
Verpile, Tomic-Canic, & Pastar, 2022; Keogh, Seaman, Barrett, Taylor-
Robinson, & Szczesniak, 2019; Tang et al., 2023). However, in doing so,
they tend also to eschew causative explanations (remaining agnostic to the
mechanistics). This lack of mechanistic insight tends to frustrate foundational
scientists, further cementing the psychological divide between experi-
mentalists and modellers. Our view is that this unhealthy situation needs to be
reversed.

One modelling approach that has gained significant traction across
disciplines over the last decade is metabolic modelling (Henson, Orazi,
Phalak, & O’Toole, 2019; Lee et al., 2016; Phalak & Henson, 2019).
Although this remains grounded in certain key assumptions (e.g., that the
microbial communities being modelled are constrained to certain dominant
taxa), the main elements of the model (shared metabolites) are considered
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to be “public goods” available to all species in the niche (Henson, Orazi,
Phalak, & O’Toole, 2019; Mould et al., 2024). In addition, these models
appeal to experimentalists because they explicitly consider genes and
defined metabolic frameworks. Consequently, such models integrate a
variety of ‘omic and microbiological data.

On a final note, and as noted above, data quality is often limiting.
However, we recently introduced a Bayesian-like simulation system for
parameter optimisation based on the generalised Lotka-Volterra model
(Ho et al., 2023). This approach took a purely ecological approach to
interpreting the interactions between microbes, antimicrobial agents, and
other medications, treating all of these interventions as equivalent ecological
agents that contribute to the sum of the microbial interactome. Using this
agnosticism as a point of departure, we grouped organisms and medical
regimes, not according to prior knowledge per se, but rather according to the
patterns observable in the data. This confirmed the fluidity of microbial
interactions, and further, revealed the important role played by certain
therapeutic interventions in remodelling these interactions (Ho et al., 2023).

Fig. 3 The jigsaw puzzle of experimental microbiology. Across the many schools of
approach in microbiology, advances are being made in both understanding and
methodological power. However, there remains a lag in marrying those advances
together. This illustration points to the necessity of fitting together findings made in
vivo, in vitro, ex vivo and in silico.
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7. Conclusions

With the advent of culture-independent analyses, it is now clear that
microbial ecosystems are more complex and inter-linked than previously
imagined, and that a good deal of “new biology” awaits the next generation
of researchers (Fig. 3). Consequently, this recent ecological turn of main-
stream microbiology looks to be a positive one, and is driving new con-
ceptual tools and resources. This will be crucial if we are to better understand
how antimicrobials work (at a community level) and how biofilm formation,
virulence and AMR are linked in such highly-networked populations.

A promising direction is the development of comprehensive, con-
tinuously updated databases that can serve as central repositories for
information on polymicrobial interactions. A notable example of such a
database is the Inter-Species Crosstalk Database by Magalhães et al. (2022),
which offers expertly curated data on the molecular basis of interspecies
interactions in co-infection scenarios. In our view, and although currently
underused, such resources hold great promise for better understanding
polymicrobial infections. The only lament of the senior author of this
review is that he did not engage in this area of research when he was first
embarking on his career; mitigating, at that time, polymicrobial interac-
tions were seen as something of a “backwater” of microbiology, associated
mainly with understanding sewerage sludge bioreactors, ruminants and so
on – not exactly either “molecular” or inspiring, but how things have
changed! We are entering a fascinating new era of microbiology, and the
next generation of researchers are lucky indeed.
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