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Abstract

A better understanding of the system-level effects of antibiotics on bacterial cells is essential

to address the growing challenge of antibiotic resistance. Utilising Multipad Agarose Plate

(MAP) platforms, we monitor the growth rate and cell morphology of three clinically relevant

species (E.coli, S.aureus and P.aeruginosa) following exposure to 14 antibiotics across 11

concentrations (31 microbe-antibiotic combinations in total). Our results reveal a consistent

increase in population growth rate heterogeneity (PGRH) as drug concentrations approach

the minimum inhibitory concentration (MIC). Strikingly, the magnitude of this heterogeneity

correlates with the functional distance between the ribosome and the specific cellular pro-

cesses targeted by the antibiotics. Among the seven antibiotic classes studied, protein syn-

thesis inhibitors and disruptors cause the lowest PGRH, while heterogeneity progressively

increases with RNA synthesis inhibitors, DNA replication inhibitors, cell membrane disrup-

tors and cell wall synthesis inhibitors. Because the ribosome is central to growth rate control,

we hypothesize that heterogeneity might arise at the system level as a result of the propaga-

tion of damage to protein synthesis. Low heterogeneity is desirable from a clinical perspec-

tive, as high heterogeneity is often associated with persistence and treatment survival.

Additionally, we observed a strong correlation between morphological alterations and

growth inhibition across all antibiotics and species tested. This led to the development of a

novel morphological parameter, MOR50, which enables rapid estimation of MIC for antibiotic

susceptibility testing (AST) with a single snapshot after just 2.5 hours of incubation. In addi-

tion to introducing a novel, resource-efficient and rapid AST method, our findings shed new

light on the system-level effects of antibiotic perturbations on bacteria, which might inform

treatment design.

Author summary

Antibiotic drugs affect bacterial cells well beyond their specific molecular targets, and

understanding their system-level effects could be key to combating antibiotic resistance.

Using a recently developed high throughput imaging platform, Multipad Agarose Plate
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(MAP), we tracked the growth rates and cell morphology of three species -E. coli, S.
aureus, and P. aeruginosa- under exposure to 14 antibiotics at 11 different concentrations,

resulting in 31 microbe-antibiotic combinations. The findings reveal a consistent increase

in population growth rate heterogeneity (PGRH) as antibiotic concentrations near the

minimum inhibitory concentration (MIC), and a correlation between the level of hetero-

geneity and the functional distance from the ribosome to the antibiotics’ target processes.

Among the seven antibiotic classes tested, protein synthesis inhibitors lead to the lowest

PGRH, while heterogeneity escalates with inhibitors of RNA synthesis, DNA replication,

cell membrane disruptors, and cell wall synthesis inhibitors. This suggests that heteroge-

neity may stem from damage to protein synthesis due to the ribosome’s role in growth

control. Low heterogeneity is favourable from a healthcare perspective, as it relates to

reduced bacterial persistence. A new morphological parameter, MOR50, is developed

allowing very quick MIC estimation in antibiotic susceptibility testing (AST), potentially

enhancing the speed and efficiency of treatment.

1 Introduction

Antibiotics interact with specific molecular targets within bacterial cells to inhibit essential

processes. These disruptions initiate cascades of events that eventually lead to two phenotypes:

growth arrest and death [1]. Although the specific molecular targets of most antibiotics are

well characterised [2], the indirect processes that ultimately impair cellular growth are complex

and not fully understood. A comprehensive understanding of the system effects of antibiotics

at the single-cell level would shed light on the inner workings of bacteria and could improve

the rational design of treatment.

Cell size is one of the properties that bacteria regulate at the system level. It is the complex,

intensively studied, and still not fully understood result of the coordination of the rates of syn-

thesis of the cell’s envelope, its DNA and its many other cytoplasmic contents. These rates, in

turn, depend on ribosome activity and metabolism [3]. For E.coli in balanced growth, cell size

has a strong positive correlation with growth rate and ribosomal content [3, 4]. Perturbations,

such as those caused by antibiotics, can decouple such relations. For example, decreased DNA

replication rates can lead to increased cell sizes [3], while partial inhibition of the ribosomal

pool enlarges cells in nutrient-poor medium and shrinks them in rich medium [4]. However,

the field does not have a holistic picture of how antibiotics impact cell morphology, especially

where such changes would be linked to broader effects at the cell system level, rather than as a

direct consequence of the antibiotic target being inactivated.

In bacteria, growth rate is also controlled at the system level. When measuring antibiotic

efficacy, a significantly altered growth rate is typically the easiest phenotype to observe: the

minimum concentration of antibiotic that leads to growth inhibition, known as the minimum

inhibitory concentration (MIC), has guided clinical research and diagnostics for decades [5].

Several other aspects of growth can be studied to gain insight into the action of antibiotics.

Growth rate changes due to antibiotics at sub-inhibitory concentrations, for example, have

helped shed light on important questions concerning how cells grow and regulate their macro-

molecular composition [6], and how they respond to perturbations [7]. The relationship goes

both ways, and the cell’s growth rate can in turn alter antibiotic efficacy [8, 9]. Important bac-

tericidal antibiotic classes, such as aminoglycosides and beta-lactams, are less effective against

slow and non-growing cells [10, 11]. Complex systems such as bacteria are intrinsically heter-

ogenous [12] and bacterial populations simultaneously harbour fast, slow, and non-growing
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cells [13]. Heterogeneity in a genetically identical cell population is an important evolutionary

trait, and it is the basis of the observed persistence to many antibiotic treatments [14]. Persister

cells with reduced growth rates have been extensively studied in vitro [15] and are thought to

drive infection relapses in vivo [16]. Interestingly, some types of persistence are thought to be

triggered by exposure to antibiotics, an unwanted effect from the point of view of therapy [14].

Some of these system-level effects have now begun to be revealed. For example, our lab has

demonstrated that an antibiotic such as rifampicin, which targets RNA polymerase [17], can

reduce macromolecular crowding [18, 19]. This reduction is a severe, system-level perturba-

tion that impacts the rates of nearly all cellular biochemical processes. We observed similar

effects with ciprofloxacin, a fluoroquinolone that interacts with DNA gyrases [19]. Beta-lactam

antibiotics, that compromise cell wall integrity, are also known to cause toxic system effects by

promoting a futile cycle of cell wall precursors that depletes cellular resources [20]. Aminogly-

cosides, which interact with the ribosome to cause translation errors [21], are also thought to

disrupt cell integrity [22], impacting the cell’s energy production mechanisms [23]. Universal

system-level bactericidal strategies based on the production of reactive oxygen species (ROS)

have been proposed [24], spurring debate [25–28], and finding a certain degree of experimen-

tal support [29–31]. Whether by means that are ultimately universal or not, it is clear that anti-

biotics interact with the complex system that is the cell, introducing perturbations that can be

observed in molecular pathways far beyond where they started.

We recently presented a new experimental platform that enables the high-throughput opti-

cal imaging of live microbes across different environmental conditions, the Multipad Agarose

Plate (MAP) [32]. In this work, we leverage and extend the MAP to perform a systematic

investigation of the growth dynamics and morphological responses of three clinically relevant

bacterial species (E.coli, P.aeruginosa and S.aureus). We probe these bacteria out of balanced

growth, subjecting them to a panel of 14 antibiotics at a range of concentrations and capturing

sub-MIC, MIC and post-MIC behaviour. The platform and the accompanying analysis pipe-

line allow the extraction of single cell and colony parameters directly from images taken with

brightfield illumination, so that samples can be completely label-free. Our results reveal that,

approaching the MIC, antibiotics systematically increase the heterogeneity of growth rate

across microcolonies. Although the role of this heterogeneity in bacterial survival is not yet

clear, it is intriguing to study it in light of its intrinsical link to persister formation. Notably, we

observe a striking correlation between population growth rate heterogeneity (PGRH), and

functional distance from ribosome to the cellular processes targeted by the antibiotic. This pat-

tern holds true regardless of whether the antibiotic is bacteriostatic or bactericidal. For

instance, the bacteriostatic rifampicin causes greater heterogeneity than the primarily transla-

tion-targeting bactericidal aminoglycosides (Fig 1A). The latter, in turn, leads to heterogeneity

levels that are closer to those caused by the ribosome-targeting chloramphenicol.

PGRH is not the only factor that shows a striking correlation with the MIC. Our investiga-

tion of single-cell morphologies across the 14 antibiotics and three microbial species shows

that all antibiotics cause morphological alterations (Fig 1C), and unveils a strong correlation

between the degree of morphological alteration and the MIC (Fig 1B). Using dyes, several

works have previously linked antibiotic efficacy [33] and even mechanism of action [34] with

morphology using single-cell imaging. Using our insight on label-free morphology alone, we

introduce a simple heuristic metric that we call morphological change 50 (MOR50). MOR50 is

the lowest antibiotic concentration that, after incubation with exponentially growing cells,

induces a single-cell morphological change which exceeds 50% of the largest morphological

change induced at any concentration of that antibiotic. We show that MOR50 can be used to

reliably determine the MIC from a single snapshot captured after 2.5 hours of antibiotic

exposure.
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Fig 1. This study examines a range of drugs targeting different cellular functions in three bacterial species, using various system-level readouts to

analyze their effects. A Diagram of the antibiotics used in this study, ranked by the population growth rate heterogeneity (PGRH) they induce,

alongside their cellular targets. Protein synthesis inhibitors, which directly limit protein production, induce the lowest PGRH, while cell wall synthesis

inhibitors induce the highest. This suggests a potential link between PGRH and the functional distance from protein production. B Schematic plot

illustrating that morphological changes occur only at antibiotic concentrations that impact growth. While the magnitude of these changes varies greatly

(as shown in C), normalization reveals a consistent general pattern across antibiotics, irrespective of their mechanism of action. This novel link between

morphology change and growth inhibition led us to develop a new heuristic metric, MOR50, which can be used for rapid and high throughput MIC

estimation. C Schematic showing the morphological impacts of different antibiotics for the three tested bacterial species. The white cell masks in the

centre represent the typical morphologies of each bacteria species without an antibiotic present, while the coloured cells represent changes induced by

the antibiotics. Some antibiotics increase cell size, while others decrease it. Data for this plot is provided in Section 2.3.

https://doi.org/10.1371/journal.ppat.1012924.g001
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Taken together, our results identify an extensive and un-appreciated tendency towards het-

erogeneous growth among pathogens when exposed to sub-inhibitory concentrations of anti-

biotics that do not directly inhibit protein synthesis. We expect that this will motivate further

research aimed at understanding whether such phenomena may lead to the formation of per-

sisters, and whether their formation relies on mechanisms that require protein synthesis [35].

We further argue that our new metric, MOR50, could pave the way for a new generation of

rapid phenotypic AST methods, potentially transforming the landscape of microbial diagnos-

tics and antibiotic therapy.

2 Results

2.1 The MAP platform accurately measures the MIC of E.coli, P.aeruginosa
and S.aureus based on growth rate

Leveraging the recently developed MAP platform [32], we first set out to assay the MIC of a

panel of 14 antibiotics against E.coli, P.aeruginosa and S.aureus, three human commensals that

can turn pathogenic. This was done based on the tracking of growth rate over the first three

hours after exposure to antibiotics (S1 Fig). Each dataset consists of data from biological qua-

druplicates, each consisting of approximately 30 technical replicates. As previously [32], we

used Hill curves to model growth rate as a function of antibiotic concentration with examples

shown for E.coli exposed to tetracycline, rifampicin and ampicillin in Fig 2A–2C respectively

(see S2 Fig for all antibiotics and species). The fit is highly time-dependent for some antibiotics

because death or growth halt occurs only after a significant amount of damage has accumu-

lated in the cell or after the action of a significant amount of molecular targets of the antibiotic

has been blocked. It is, therefore, crucial to pick the time window used for analysis carefully.

We chose to use the 2.5-hour time-point for the MIC determination, as by then, all of the dif-

ferent antibiotics had performed their action (bacteriostatic or bactericidal). This delay is

required for cell wall synthesis inhibitors especially, as they have little impact on colony growth

rate within the first hour (S1 Fig). See S3 Fig for fits performed on each repeat for all combina-

tions of species and antibiotics. The Hill exponent n measures the steepness of the drop

between growing and non-growing conditions across the various antibiotic concentrations,

with larger values indicating a steeper drop. As MIC, we use the 90% inhibitory concentration

(IC90) where growth rate is reduced by 90%. The correspondence with the broth microdilution

assay (generally accepted as a gold standard method for phenotypic AST) and EUCAST values

confirmed the validity of the platform for the assay of antimicrobial susceptibility beyond E.
coli, see S4 and S5 Figs respectively. The fold difference between MIC as measured by growth

rate on the MAP and the MIC obtained from broth microdilution is 0.9 ± 0.7 (mean ± SD,

base 2), meaning the two methods, on average, produce a MIC concentration within a factor

of 2 of each other.

2.2 Antibiotics affect population growth rate heterogeneity (PGRH)

depending on the cell function they target

Among the antibiotics considered, we observed an interesting pattern in a metric we call popu-

lation growth rate heterogeneity (PGRH). PGRH is defined as the standard deviation of colony

growth rates at a given time point, averaged across multiple time points. The metric reflects

the variability in growth rates between colonies under otherwise identical conditions. PGRH is

computed for each pad and then averaged across repeats in the 1 to 2.5-hour time period. Fig

2D–2F shows how tetracycline produces only a minor increase in PGRH, occurring at a con-

centration where growth is partially inhibited. In contrast, rifampicin causes a substantial
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increase in PGRH, and ampicillin results in an even greater increase (see S6 Fig for all antibiot-

ics and species). We pick the local maxima of PGRH for concentrations with inhibited growth

as the representative PGRH of that antibiotic/species combination. To visualize this heteroge-

neity, Fig 2G–2J shows example colonies and their growth after 1 and 2.5 hours on the MAP.

Fig 2. Different antibiotics affect bacterial growth rate and population growth rate heterogeneity (PGRH) differently, as illustrated by E.coli
exposed to three antibiotics from our test set. The concentration selected to represent PGRH for subsequent analysis has a white-centred marker. A

Effect of tetracycline (a protein synthesis inhibitor) on E.coli colony growth rates after 2.5 hours of growth on the MAP. A Hill equation was used to fit

the data and determine the concentrations corresponding to 10% (IC10) and 90% (IC90) growth inhibition. Each point represents the mean and

standard deviation from four biological repeats. B Effect of rifampicin (an RNA synthesis inhibitor) on E.coli growth rates. Data represent five

biological repeats. C Effect of ampicillin (a cell wall synthesis inhibitor) on E.coli growth rates. Data represent six biological repeats. D Effect of

tetracycline on the PGRH of E.coli during 1 to 2.5 hours of growth on the MAP. PGRH is defined as the standard deviation of colony growth rates at a

given time point, averaged across multiple time points and biological repeats. E Effect of rifampicin on E.coli PGRH. F Effect of ampicillin on E.coli
PGRH. G Control showing how growth rate typically varies between microcolonies when there is no antibiotic present. Colony images after 1 hour of

growth on the MAP are shown alongside their segmentation masks. The mask from an additional 1.5 hours of growth is overlaid in a lighter hue,

highlighting differences in colony growth. H Example showing the heterogeneous effects of the selected tetracycline concentration on colony growth. I

Example of heterogeneous effects of rifampicin. J Example of heterogeneous effects of ampicillin.

https://doi.org/10.1371/journal.ppat.1012924.g002
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Colonies treated with tetracycline exhibit similar area changes, whereas those treated with

rifampicin and ampicillin display pronounced variability. Some colonies show little or no

growth, while others grow significantly. Among the antibiotics considered, we observed an

interesting pattern in a metric we call population growth rate heterogeneity (PGRH). PGRH is

defined as the standard deviation of colony growth rates at a given time point, averaged across

multiple time points. The metric reflects the variability in growth rates between colonies under

otherwise identical conditions. PGRH is computed for each pad and then averaged across

repeats in the 1 to 2.5-hour time period. Fig 2D–2F shows how tetracycline produces only a

minor increase in PGRH, occurring at a concentration where growth is partially inhibited. In

contrast, rifampicin causes a substantial increase in PGRH, and ampicillin results in an even

greater increase (see S6 Fig for all antibiotics and species). We pick the local maxima of PGRH

for concentrations with inhibited growth as the representative PGRH of that antibiotic/species

combination. To visualize this heterogeneity, Fig 2G–2J shows example colonies and their

growth after 1 and 2.5 hours on the MAP. Colonies treated with tetracycline exhibit similar

area changes, whereas those treated with rifampicin and ampicillin display pronounced vari-

ability. Some colonies show little or no growth, while others grow significantly.

There is a consistent change in PGRH around concentrations of partial growth inhibition

for all antibiotic/species combinations (S6 Fig). Fig 3A shows how PGRH is changed the least

for the protein synthesis inhibitors (sometimes causing a decrease, sometimes a small

increase), whereas the other classes cause increases of varying magnitude starting with folic

acid synthesis inhibitors, RNA and DNA synthesis inhibitors, before ending with cell mem-

brane and cell wall synthesis inhibitors producing the largest PGRH (see S7 Fig for the full

breakdown). This trend largely holds true for the individual species as well, as shown in S8 Fig,

with some notable exceptions being that antibiotics that target protein synthesis in addition to

other targets have much larger heterogeneity in S.aureus and P.aeruginosa than in E.coli. Also,

the PGRH induced by DNA synthesis inhibitors in P.aeruginosa is significantly larger than in

the other species. These changes might reflect species-specific characteristics of antibiotic

actions.

Fig 3. Protein synthesis inhibitor antibiotics cause the smallest population growth rate heterogeneity (PGRH), while cell wall synthesis inhibitors

cause the largest PGRH. A PGRH, normalized to the growth rate in the absence of antibiotics, averaged across E.coli, S.aureus and P.aeruginosa and

grouped by antibiotic target. The antibiotic classes are ordered by PGRH from least to greatest. Bars represent the mean and standard deviation across

antibiotic/species combinations. A detailed version of this plot, showing individual antibiotics and species, is provided in S8 Fig. B Correlation between

PGRH and the Hill coefficient for each antibiotic. Data points represent the mean and standard deviation across species for each antibiotic.

https://doi.org/10.1371/journal.ppat.1012924.g003
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We also observed a correlation between PGRH and the Hill fitting parameter n, which

describes the steepness of the growth rate vs antibiotic concentration curve as it transitions

from growth to non-growth (Fig 3B). Antibiotic classes exhibited clustering: protein synthesis

inhibitors had both low PGRH and n, while cell wall synthesis inhibitors showed high PGRH

and n. Other classes fell between these extremes. Notably, protein synthesis inhibitors with

additional targets show higher n values while maintaining low PGRH, whereas DNA synthesis

inhibitors showed a larger increase in PGRH while maintaining low n. This pattern of cluster-

ing largely holds true for individual species as well (S9 Fig).

Heterogeneity appears to depend on the cell function targeted by the specific antibiotic

class. This would seem to exclude major contributions by mechanisms that are known to cause

heterogeneity in antibiotic response and that are class-independent or cross-class. One exam-

ple of such a mechanism is efflux pumping. To test whether and in what measure heterogene-

ity depends on these phenomena, we conducted experiments using an E.coli mutant lacking

the TolC transporter, a key component of several efflux pumps, including the multidrug efflux

pump AcrAB-TolC. Antibiotics like ciprofloxacin (which interferes with DNA replication)

and tetracycline (a protein synthesis inhibitor that produces one of the lowest PGRH) are

among its substrates, making this mutant a useful model for assessing the impact of efflux

activity on PGRH. The mutant exhibited a significantly lower MIC compared to the corre-

sponding E.coli wild-type strain, consistent with reduced efflux capacity (S10 Fig). However,

there was no significant difference in PGRH between the wild type and the mutant when

exposed to either ciprofloxacin or tetracycline. This suggests that while the TolC transporter

contributes to overall antibiotic resistance, its absence does not appear to influence the vari-

ability in growth rates between colonies under the tested conditions.

2.3 All antibiotics induce changes in cell morphology

Next, we turned our attention to single-cell morphology. Using the same datasets as for the

growth rate analysis, we performed single-cell segmentation on the micrographs to compute

cell areas, lengths and widths. To do so, we expanded our analysis pipeline to include a classical

cell segmentation step, informed by the colony segmentation. Fig 4A shows the E.coli cell seg-

mentation masks atop brightfield microscopy data, highlighting that our analysis pipeline can

appropriately segment E.coli cells that grow filamentous in response to ciprofloxacin. For com-

prehensive benchmarking of this algorithm on the three species, see S2 Table. In Fig 4D, we

show how the morphology change is time-dependent. All cells start out with the same mor-

phology when seeded on the pads, and only after some time do changes caused by the antibi-

otic begin to appear. It is, therefore, important to be consistent with the experimental protocol

and time-point used for analysis. We show that morphological changes are concentration-

dependent by taking data from the 2.5-hour period again and plotting morphology parameters

against antibiotic concentration. Cells treated with ciprofloxacin only elongate in a subset of

the concentrations tested, presumably because low doses are insufficient to cause changes and

high doses kill the cells quickly, not giving them time to grow at all (Fig 4G).

The cell wall synthesis inhibitor mecillinam also causes morphological alterations in E.coli.
While these manifested mainly in length for ciprofloxacin, mecillinam causes the cells to grow

into spheroids (Fig 4B). These are also well-segmented by our pipeline. Similar to ciprofloxa-

cin, the change in width is time and concentration-dependent, with the largest shapes occur-

ring after 2 hours of growth (Fig 4E and 4H).

The protein synthesis inhibitor chloramphenicol also produces an increase in cell size (Fig

4C). The increase becomes apparent only after some delay as a consequence of growth and
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Fig 4. The morphology of E.coli changes significantly when exposed to antibiotics. A Representative colonies from pads with varying ciprofloxacin

(DNA synthesis inhibitor) concentrations demonstrate the antibiotic’s impact on cell morphology after 2.5 hours of incubation. Single-cell

segmentation masks are overlaid, with each cell shown in a different colour. Ciprofloxacin induces clear filamentous growth. The bottom row provides

a 4× zoom of the corresponding frames from the top row. B Mecillinam (cell wall synthesis inhibitor) causes the cells to grow into a more spherical

shape. C Chloramphenicol (protein synthesis inhibitor) causes the cells to grow larger. D Filamentous growth becomes evident over time, with the most

pronounced differences observed around 2 hours of growth for ciprofloxacin. Each line represents the mean cell area at a given antibiotic

concentration, with shaded areas indicating the standard deviation from four repeats. Darker colours represent higher antibiotic concentrations, and

data points are binned at 30-minute intervals. E Changes induced by mecillinam occur with a similar time delay. Data is based on four repeats. F

Changes induced by chloramphenicol occur more quickly, becoming evident within the first hour of growth. Data is based on four repeats. G At 2.5

hours of growth, morphology data show that antibiotic concentrations near the MIC induce the most substantial changes in cell morphology, with

significant area increases primarily driven by cell elongation. The MIC, averaged across four repeats, is indicated by the vertical line. The boxplot

displays the median (line) and interquartile range (box), with whiskers extending to 1.5 times the interquartile range. Data is based on four repeats. H

For mecillinam, morphology data at 2.5 hours reveal that the most pronounced change is an increase in cell width, with minimal impact on length.

These changes are most prominent at concentrations close to the MIC. Data is based on four repeats. I Chloramphenicol induces moderate increases in

both cell length and width, with the largest magnitude close to the MIC. Data is based on four repeats.

https://doi.org/10.1371/journal.ppat.1012924.g004
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division (Fig 4F). Like in the other cases, the change in size is concentration-dependent and

caused by both increased width and length (Fig 4I).

A final example we will mention is vancomycin, a cell wall synthesis inhibitor that is the

only antibiotic tested that causes E.coli cells to shrink in size. Again, the shrinkage becomes

apparent only after some delay as a consequence of growth and division (S11 Fig). Like in the

other cases, the change in size is concentration-dependent, and it is due to a reduction in

length that dominates the small increase in width (S12 Fig).

Taken together, these results suggested that, for cells growing exponentially at the time of

seeding, the largest morphological changes generally occur after about 2.5 hours of growth on

the MAP. This corresponds to approximately 6 doublings for E.coli (whose doubling time is 24

min on the MAP), and four doublings for S.aureus (37 min) and P.aeruginosa (36 min). See

S11 Fig for plots highlighting morphology over time for all the tested antibiotics with E.coli, P.
aeruginosa and S.aureus, and S12 Fig for all plots of morphology vs antibiotic concentration.

Having established the 2.5-hour time point as the time of choice for assessing morphology,

we investigated all of the remaining antibiotic-microbe combinations in Fig 5. Representative

images of microcolonies for E.coli, S.aureus, and P.aeruginosa treated with various antibiotics

are shown in Fig 5A–5C, respectively. Remarkably, all of the antibiotics tested caused notice-

able morphological changes on all of the species tested, albeit with different magnitudes (Fig

5D–5F). For E.coli, all treatments except vancomycin resulted in cell enlargement, with the

largest sizes observed for beta-lactams and ciprofloxacin (Fig 5D). In S.aureus, about half the

antibiotics induced an increase in size and half induced a reduction in size. Except for tetracy-

cline, protein synthesis inhibitors and vancomycin tended to produce smaller cells, while

ampicillin, as well as DNA and folic acid synthesis inhibitors, caused cell enlargement (Fig 5E).

The antimicrobial peptide cecropin A caused P.aeruginosa to reduce in length and increase in

width, whereas the remaining treatments caused an increase in cell size (Fig 5F).

Overall, as seen in Fig 6, cell wall synthesis inhibitors generally produced the largest changes

in single cell volume, whereas the protein synthesis inhibitors produced the smallest. Some

antibiotics caused consistent changes across the different species (like ampicillin, norfloxacin

and ciprofloxacin), while others showed significant differences. For example, several of the

protein synthesis inhibitors produced smaller sizes in S.aureus and larger in E.coli and P.
aeruginosa.

2.4 MOR50 accurately estimates the MIC using just cell morphology and

drastically reduces imaging time

As shown in Fig 4, the largest morphological changes occur in specific concentration ranges,

beyond which they tend to subside at least to a certain degree. This is likely because when drug

concentrations are very high, the transition between growth and growth halt/death is quick

and does not allow enough time for morphological changes that depend on growth (S11 Fig).

For all of the antibiotics and species considered, morphological changes were closely correlated

with growth inhibition (S13 Fig).

Motivated by the correlation between morphology change and MIC, we developed a simple

heuristic metric to estimate the IC50 (where the growth rate is inhibited by 50%) exclusively

from the morphological information acquired at a single time point. Morphological change 50
(MOR50) is defined as the lowest antibiotic concentration that induces a single-cell morpho-

logical change which exceeds 50% of the largest morphological change induced at any concen-

tration of that antibiotic. Overall, cell area has proven to be the most reliable metric for

assessing morphology, and it is the only parameter we use in this study for MOR50 determina-

tion. However, for some antibiotics, cell width or length may provide a higher signal-to-noise
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ratio, depending on the predominant morphological changes they induce. As an example of

how to compute MOR50, Fig 7A shows ciprofloxacin concentration vs cell area after 2.5 hours

of incubation with the antibiotic. The largest magnitude change is positive, so the MOR50

threshold is placed halfway between the control area at 4.2 mg L−1 and max area at 26 mg L−1,

and the MOR50 concentration is determined as the concentration where the mean cell area

curve intercepts this line. For vancomycin in Fig 7B, there is an overall larger reduction in

area. Again, we place a threshold halfway between the control area and the maximum area

change (which is now below the control area), and the MOR50 is determined as the concentra-

tion where the mean cell area curve intercepts this line. This process is shown for all combina-

tions of tested antibiotics and species in S14 Fig. By normalizing antibiotic concentration to

the IC50 from the growth rate Hill fit and normalizing cell area to range between zero and one,

Fig 7C shows how well this works across the different antibiotics for E.coli. Similar plots for S.
aureus and P.aeruginosa are presented in S15 Fig, along with non-normalized area plots for all

three species.

Fig 5. All antibiotics induce changes in morphology, though to varying degrees. These plots show data at the antibiotic concentration closest to

IC50 after 2.5 hours of imaging. A Images illustrating the response of E.coli to antibiotics. All antibiotics, except vancomycin, produce an increase in

cell size. See Fig 4 for images from ciprofloxacin, mecillinam and chloramphenicol. B Morphological responses of S.aureus to a sample of antibiotics.

Ampicillin, gentamicin, norfloxacin, and trimethoprim increase cell area compared to the control, while vancomycin reduces cell size. C Morphological

responses of P.aeruginosa to a selection of antibiotics. All antibiotics induce subtle increases in cell area. D Scatterplot showing how the test set of

antibiotics affects the mean cell width and length for E.coli. Markers represent the mean and standard deviation across three or more replicates per

antibiotic. Cell wall and DNA synthesis inhibitors induce the largest morphological changes. E Scatterplot showing the impact of cell wall and nucleic

acid synthesis inhibitors on S.aureus morphology, with significant effects observed for all tested antibiotics. Protein synthesis inhibitors induce smaller

changes, with kanamycin, neomycin, and gentamicin approaching the noise floor of the measurements. The dashed line represents x = y, where perfect

spheres would fall. F Scatterplot showing the morphological effects of antibiotics on P.aeruginosa. With the exception of cecropin A, all tested

antibiotics induce small but significant increases in both cell length and width.

https://doi.org/10.1371/journal.ppat.1012924.g005
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We found that using cell area data from the 2.5-hour time point produces the best correla-

tion between MOR50 and IC50 for all species (S16 Fig). At this time, we observed a precise cor-

respondence across the three microbial species (Fig 7D–7F). A tabulated summary of the data

is shown in Table 1. The geometric fold difference between the two methods is 0.6±0.5

(mean ± SD, base 2) across all tested antibiotics/species combinations. This indicates that, on

average, MOR5050 values are within a factor of 20.6� 1.5 from IC50.

To compare our MOR50 metric with MIC from broth microdilution (MICBM), we found

the mean difference between IC50 and IC90 based on the MAP data is 2.4±1.2 (mean ± SD).

This can then be used as a modification factor to relate MOR50 to MIC, which produces a fold

difference between MICBM and MICMOR50 of 1.3±0.9 (S17 Fig). The small amount of informa-

tion required for the MOR50 makes it a powerful tool for MIC estimation as it minimizes

imaging time. In addition, because it relies on changes rather than on absolute morphologies,

the measure is completely agnostic to species identity and can be deployed without knowing

the species tested beforehand. Using MOR50 and the MAP platform, we are able to determine

the MIC of 8 antibiotics for a given biological sample in as little as 8 minutes of imaging after

2.5 hours of incubation when seeding from bacteria in the exponential growth phase.

We also attempted to correlate minimum bactericidal concentration (MBC) with the differ-

ent ways of measuring MIC on the MAP platform (S18 Fig). As expected, where at all achiev-

able, cell death of the full population required higher antibiotic doses, and we observed a closer

correlation with MIC values obtained from the broth microdilution control experiments

(MICBM).

3 Discussion

The effects of antibiotics on the cell at a system level are only partly understood. Here, we used

MAP, a high-throughput imaging platform we recently developed, to investigate the system-

Fig 6. There are trends in morphology and growth characteristics between the antibiotic classes, but there are also

exceptions. This plot shows how the mean cross-sectional area at IC50 is affected for the three species and for different

antibiotics, with a symlog x-scale. The antibiotics are grouped by functional target. The bacteriostatic antibiotics are

marked with *. Data is shown for E.coli, S.aureus, and P.aeruginosa. The error bars indicate a 95% confidence interval.

https://doi.org/10.1371/journal.ppat.1012924.g006
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level effects of 14 antibiotics on the growth and morphology of three clinically relevant bacte-

rial species. Specifically, we demonstrated that bacterial microcolonies grow exponentially at a

certain, consistently heterogeneous rate. Upon antibiotic treatment, as the dose approaches

the MIC, things change. Cell wall synthesis inhibitors cause the largest increase in PGRH, fol-

lowed by cell membrane synthesis inhibitors, DNA synthesis inhibitors, RNA synthesis inhibi-

tors, protein synthesis inhibitors with other additional targets, and folic acid synthesis

inhibitors. Finally, protein synthesis inhibitors affect PRGH very little. Based on these observa-

tions, we speculate that bacteria’s growth rate heterogeneity in response to an antibiotic

depends on the functional distance between antibiotic targets and cellular growth rate control.

The active ribosomal pool has been recognised to modulate growth rate in a number of studies

[36–40], and antibiotics that influence it directly benefit from a fast track towards growth

Fig 7. The magnitude of morphological change correlates closely with growth inhibition. Morphological change 50 (MOR50) metric estimates the

50% inhibitory concentration (IC50) of an antibiotic from single-cell morphology data after 2.5 hours of antibiotic exposure. A Ciprofloxacin

concentration vs cross-sectional cell area for E.coli. Markers show mean ± SD across repeats, capturing natural cell size variation due to the cell cycle.

The MOR50 threshold (horizontal line) is halfway between mean areas at no antibiotic and maximum change. The MOR50 concentration (blue line)

closely aligns with IC50 (grey line). Data from four biological repeats. B Vancomycin concentration vs cell area for E.coli. Markers show mean ± SD

across repeats. The MOR50 concentration is where the curve crosses the threshold from above, aligning with IC50. Data from six biological repeats. C

Antibiotic concentration (normalized to IC50) vs cell area (normalized so that mean area without antibiotics is zero, and mean area at the concentration

of max area change is one) for all antibiotics in our test set applied to E.coli. The MOR50 threshold is shown at 50% change, and the MOR50

concentrations are where the area curves first cross this threshold. Morphology change varies between antibiotics, with noise evident in antibiotics

inducing small changes. Each line consists of data from three or more biological repeats. D-F Scatterplots of IC50 vs MOR50 for E.coli, S.aureus, and P.
aeruginosa show strong correlations (Pearson r, Spearman ρ). Dashed line: y = x. Markers: mean ± SD between repeats, with 3 or more repeats per

condition.

https://doi.org/10.1371/journal.ppat.1012924.g007
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impairment. Antibiotics that do not use this mechanism of action are functionally further

away from growth rate control. Thus, their impact on growth rate depends on the inherent

robustness to perturbations of each cell as a system. While at this stage the repercussions of

such phenomenon are unclear, heterogeneity has frequently been linked to persistence and

treatment survival. Further studies will show whether heterogeneity-boosting antibiotics may

enhance persister production, for example, when drug cocktails are administered. Lastly, the

validity of these observations for S.aureus and P.aeruginosa further to E.coli suggests that the

same growth laws may apply universally, even in species that have been less extensively studied

from a systems-level physiological perspective.

Morphology is the other variable controlled at the system level that we were able to assay in

this work. As demonstrated by others (primarily using data from balanced growth of E.coli),
many antibiotics alter bacterial morphology. Here, we have shown that this is true for all of the

31 antibiotic-bacterium combinations, regardless of whether the cells have a rod or coccoid

shape or the antibiotic’s mechanism of action, although these factors do influence the magni-

tude of the effect. We have shown that to emerge, defects require growth in all cases, although

we did not investigate antimicrobials such as Gramicidin S, that directly pierce the cell enve-

lope [41]. We could confirm the well-established mechanism that leads to morphological alter-

ations for some of the antibiotics tested, such as ciprofloxacin or beta-lactams. In other cases,

the results were surprising. For example, in a rich medium such as the one in our pads, E.coli
cells in balanced growth that are treated with chloramphenicol are expected to shrink [4] while

we observed them swell. While we do not know the reason for this discrepancy, we assume

that this emerges from the differences in growth conditions.

We have also demonstrated that single-cell morphology alone can accurately estimate the

minimum inhibitory concentration (MIC) of antibiotics, providing a rapid and cost-effective

method for single-cell imaging research and antibiotic susceptibility testing (AST). The mor-

phology-based metric we introduced, morphological change 50 (MOR50), correlates strongly

with growth inhibition IC50. Furthermore, MIC estimation based on MOR50 (MICMOR50)

aligns closely with MIC values obtained using traditional broth microdilution (MICBM) and

Table 1. Showing average MIC values obtained through growth rate as outlined in [32] (IC90), and single-cell morphology using the MOR50 metric. All MIC values

are reported in mg L−1. Values are reported as mean and standard deviation between biological repeats. The combinations of species and antibiotics marked with “-” were

not tested. We note that our strain of S.aureus carries a plasmid encoding for Kanamcycin resistance.

Antibiotic E.coli P.aeruginosa S.aureus
IC50 MOR50 IC50 MOR50 IC50 MOR50

Ampicillin 40 ± 10 80 ± 60 - - 0.021 ± 0.008 0.009 ± 0.003

Carbenicillin 30 ± 10 90 ± 60 - - - -

Cecropin A 1.7 ± 0.8 2 ± 2 8 ± 5 6 ± 6 - -

Chloramphenicol 2.3 ± 0.4 4 ± 1 - - 1.7 ± 0.4 0.9 ± 0.4

Ciprofloxacin 0.011 ± 0.005 0.009 ± 0.003 0.033 ± 0.007 0.016 ± 0.004 0.07 ± 0.02 0.09 ± 0.09

Gentamicin 0.3 ± 0.2 0.9 ± 0.6 0.4 ± 0.4 0.3 ± 0.2 0.29 ± 0.06 0.3 ± 0.2

Kanamycin 1.4 ± 0.3 4 ± 5 7 ± 2 12 ± 6 100 ± 30 300 ± 300

Mecillinam 0.51 ± 0.05 0.34 ± 0.09 - - - -

Neomycin 0.5 ± 0.2 0.6 ± 0.3 2.7 ± 0.6 3 ± 1 5.0 ± 0.1 5 ± 6

Norfloxacin 0.4 ± 0.1 0.42 ± 0.06 2.4 ± 0.3 1.7 ± 0.5 0.2 ± 0.1 0.2 ± 0.4

Rifampicin 6.7 ± 0.6 10 ± 8 - - - -

Tetracycline 0.8 ± 0.2 1.2 ± 0.3 5.0 ± 0.6 4.7 ± 0.7 0.021 ± 0.002 0.022 ± 0.008

Trimethoprim 0.09 ± 0.03 0.07 ± 0.03 - - 0.39 ± 0.05 0.2 ± 0.2

Vancomycin 70 ± 20 140 ± 50 - - 0.21 ± 0.03 0.2 ± 0.2

https://doi.org/10.1371/journal.ppat.1012924.t001
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growth-rate-based MIC determination on the MAP platform (IC90) across all tested antibiotic

classes. Notably, MICMOR50 enables MIC estimation within 2.5 hours of incubation with only

a few minutes of imaging time, significantly reducing the time and cost of AST. Testing with

clinical isolates will confirm if MOR50 can be applied generally in a clinical context. Clinical

samples will need to be understood with particular attention to added layers of biological com-

plexity, for example one can expect phenomena such as heterogeneity in the length of the lag

phase, which might condition the degree of morphological changes. There may of course also

be technical challenges in segmenting the cells, depending on the nature of the clinical isolates

and the degree of their pre-processing. This advancement has the potential to transform AST

by facilitating the quick selection of effective antibiotics against the backdrop of rising antimi-

crobial resistance.

While genotypic methods have advanced rapidly, phenotype-based assays remain the gold

standard for AST due to their direct link to functional outcomes, although these methods

often face challenges related to cost and time. Recent efforts, such as those by Choi et al. [42]

and Baltekin et al. [43], have laid important groundwork in rapid AST methods. However, our

MAP platform, coupled with the MOR50 metric, surpasses previous approaches in both

throughput and affordability, as well as robustness across species and antibiotic classes. Unlike

micro-injection mould-dependent systems, MAPs are inexpensive to fabricate and deliver

exceptionally high-quality microscopy images. Similar to earlier fast AST methods, our

approach can produce MIC results based on growth rate within 2.5 hours, but by leveraging

morphology, results can be obtained after only 8 minutes of imaging per MAP. Freeing up

instrument time gives the potential to process up to 100 MAPs on a single microscope per day,

equating to testing 800 antibiotic-bacteria combinations or approximately 10, 000 individual

pads daily. Such throughput drastically reduces the effective cost per sample. Future integra-

tion with automated incubation and loading platforms could further enhance throughput and

ease of use, making MAP a practical and scalable tool for clinical implementation.

4 Materials and methods

4.1 Sample preparation

Experiments were conducted with strains of E.coli, P.aeruginosa and S.aureus (Table 2) in

Luria-Bertani (LB) Broth (ThermoFisher, 10855001, with 10 g peptone, 5 g yeast extract, 5 g

sodium chloride per 1 L media) and Mueller Hinton (MH) Broth (Sigma-Aldrich, 70192, with

2.0 g beef infusion solids, 17.5 g casein hydrolysate and 1.5 g starch per 1 L of media). Our S.
aureus SH1000-pMV158GFP carries a KanR cassette S2 Fig. All of the bacteria morphology

data presented in this work was collected using the Multipad Agarose Platform (MAP) as

described in [32]. Some of the E.coli growth rate datasets used in this study (namely those con-

cerning the antibiotics ampicillin, carbenicillin, chloramphenicol, ciprofloxacin, mecillinam,

Table 2. Outlining the strain, growth media and analysis statistics for the different bacteria species used for these experiments. The growth media was Luria-Bertani

(LB) Broth and Mueller Hinton (MH) Broth. We started using LB Broth with E.coli, but switched to MH Broth for the later experiments with P.aeruginosa and S.aureus as

we wanted to test with this media as well, given it is recommended for use with AST by EUCAST [44]. The same growth media was used for precultures and preparing

pads on the MAP platform. Pad count, microcolony count and bacteria count are reported from a single timepoint around 2.5 hours after imaging was started, meaning

each microcolony and cell counted are unique. For the analysis, data from a few consecutive time steps is typically used.

Species Strain Growth media Pad count Microcolony count Bacteria count

E.coli K-12, MG1655 LB Broth 707 6 332 541 978

P.aeruginosa PA01-CFP [45] MH Broth 503 7 297 333 314

S.aureus SH1000-pMV158GFP [46] MH Broth 491 6 581 186 662

https://doi.org/10.1371/journal.ppat.1012924.t002
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rifampicin, tetracycline and vancomycin) were also used in our previous work [32]. This data

is used for the plots in Figs 2 and 3, as well as the relevant subfigures in S2–S9 Figs. The MAP

platforms were prepared in batches of three, with antibiotic dilution series as outlined in S19

Fig. Pre-cultures were grown overnight, diluted 500x into fresh media, and allowed to resume

exponential growth for at least three generations. These seed cultures were then diluted to a

600 nm optical density (OD600) of 0.03, and aliquots of 1.5 μL were placed on the surface of

each MAP pad. To avoid damaging the pads, the sample was ejected to form a droplet at the

end of the pipette tips (Fisherbrand SureOne Aerosol Barrier Pipette Tips 10 μL, 02–707-442),

which was then gently touched to the surface of each pad. The pads were dried for 5 to 10 min-

utes before peeling the protective film on the upper adhesive sheet and sealing the pads with a

single glass slide that covers all the pads (UQG Optics, GPD-1577, dimensions 110 × 74 × 0.17

mm).

4.2 Timelapse microscopy

The MAP platform is imaged at 37˚C on a custom-built, open-frame inverted microscope for

5 hours. One field of view (FOV) is imaged per pad, using a looping script to capture all the

images automatically. An LED focusing system is used to keep the sample roughly in focus

automatically. To account for possible misalignment between the camera’s focal plane and the

imaging plane of individual pads (which can exhibit significant tilts in relation to each other

on the same MAP), a z-stack of images is captured for each FOV. We typically capture about

ten frames per stack with 0.4 μm step size. This approach ensures that each microcolony is cap-

tured at its optimal focus in one of the frames, despite the spatial variations in the imaging

planes across different pads. For these experiments, we chose the FOVs manually at the start of

the time-lapse. However, selecting FOVs could be done in an automated fashion to give a fully

automated imaging workflow. Our workflow enables the rapid high-throughput imaging of a

large number of microcolonies and cells; their numbers for this study are given in Table 2.

Imaging was performed with brightfield illumination using a Nikon 40x CFI Plain Flour air

objective with a numerical aperture of 0.75. The camera was a Teledyne FLIR BFS-U3–

70S7M-C with a 7.1 MP Sony IMX428 monochrome image sensor. All images were captured

at 3208 × 2200 pixels, resulting in an effective resolution of 0.112 μm/pixel. The temporal reso-

lution of the datasets is about 8 minutes, limited by the time it takes for the microscope to

image all 96 pads of the MAP.

4.3 Antibiotics

The antibiotics were mixed into separate dilution series before being transferred to the pads of

the MAP. They were sourced as follows: ampicillin (Sigma-Aldrich 10835242001), carbenicil-

lin (Sigma-Aldrich C1389), cecropin A (Bachem AG, 4030488.1000), ciprofloxacin (Sigma-

Aldrich 17850), chloramphenicol (Sigma-Aldrich C0378), gentamycin (Sigma-Aldrich

G1397), kanamycin (Sigma-Aldrich K4000), mecillinam (Sigma-Aldrich 33447), neomycin

(Sigma-Aldrich N1142), norfloxacin (Sigma-Aldrich N1142), tetracycline (Sigma-Aldrich

T3258), trimethoprim (Sigma-Aldrich T7883), rifampicin (Sigma-Aldrich 557303) and vanco-

mycin (Sigma-Aldrich V2002).

Stock solutions were prepared by dissolving the antibiotics in 10 mL of milliQ water (ampi-

cillin, carbenicillin, cecropin A, ciprofloxacin, gentamycin, kanamycin, mecillinam, neomycin,

tetracycline, vancomycin), 100% methanol (rifampicin, trimethoprim), or 95% ethanol (chlor-

amphenicol, norfloxacin). These were stored at −20˚C until use. Some antibiotics were sub-

jected to ultrasonication to aid in their dissolution process.
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Antibiotics were homogeneously mixed with the agarose and growth medium at 60˚C prior

to preparing the dilution series. Subsequently, the mixture was dispensed onto the MAP plat-

form using an Opentrons OT2 pipetting robot [47], where it solidified to form the small assay

pads.

4.4 Image processing

The images are analysed using the processing pipeline available in our open-source Python

package PadAnalyser. The processing is outlined here:

Z-stack projection is performed to reduce the z-stack into a single in-focus frame. We first try

plane-based projection, which models the global tilt in focus using a plane and performs

projection based on this plane. Steps are: 1) compute the Laplacian for each frame, 2) divide

the image into regions and calculate preferred focus indices for each region based on inten-

sity peaks, 3) fit a plane to the preferred focus indices using least squares 4) create a 3D

mask based on the plane equation for linear interpolation between z-stack frames, and 5)

combine frames according to the mask to generate the final projected image. The main

advantage of this approach is that it provides a continuous projection, preserving focus con-

sistency across the field of view. However, sometimes this fails. Common reasons include

backlash in the z-stage of the microscope, leading the in-focus peak to spread across frames.

In these cases, a fallback tile-based projection algorithm is used, which divides the image

into smaller tiles (regions) and analyzes each tile independently. The steps are: 1) compute

the Laplacian for each frame to emphasize focus areas, 2) square the Laplacian values to

amplify differences in focus quality, 3) calculate a focus score for each tile across the stack,

4) use a weighted convolution kernel to enhance spatial continuity in scoring, and 5) for

each tile, select the frame with the highest focus score and add its contribution to the output

using a weighted window kernel.

Pre-processing is performed on each projected frame by clipping the brightest and darkest

pixels, applying a Gaussian blur with 3x3 kernel, and normalizing the result to integers in

the range 0 to 255. These frames are stored as 8-bit grayscale images.

Colony segmentation is done using the Scikit Image Canny Edge Detector [48] with σ = 1 to

identify edges in the input image. Morphological closing is then applied with a circular ker-

nel of size 7 × 7 for two iterations, filling small gaps in the detected edges and creating a

binary mask representing potential colonies. Masks touching the frame boundary (within

20 pixels) are removed using border-clearing techniques, and regions smaller than a mini-

mum area (species-dependent) are excluded to eliminate debris. Finally, masks are analyzed

for focus and shape consistency by evaluating their Laplacian intensity profiles as a function

of distance from the mask edge. Valid colonies exhibit a positive peak within 5 pixels and a

negative peak within 10 pixels from the edge. Masks failing this criterion are discarded.

This approach is identical to that described in [32].

Single-cell segmentation uses the Laplacian of the Gaussian (LoG) of the brightfield image,

before applying a simple threshold to binarize the image. The binary image is filtered using

the colony masks, and converted to contours with OpenCV [49]. Very small contours are

removed as they correspond to debris and optical artefacts, and the remaining contours are

split based on an outline curvature metric and point separation to make sure neighbouring

bacteria get individual masks S20 Fig. Finally, the contours are dilated to represent the true

cell areas better. See S21 Fig for details.
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Frame alignment is done based on colony segmentation masks. The centroids of segmented

colonies are then used to align consecutive frames, compensating for thermal expansion

and stage drift.

Linking colonies over time is done to track colony growth rates. Colonies from the different

time steps of a FOV are linked and assigned an identity. Colony growth rates are computed

based on the rate of change in colony area over time using the gaussianprocessderivatives
python package [50].

Extracting statistics from cell and colony masks is key to processing and visualising these

large datasets. Colony and cell areas are computed using the OpenCV cv2.contourArea
function [49]. See Section 4.6 for more information on how cell lengths and widths were

computed. The colony and single-cell statistics are bundled into two data frames per experi-

ment: one for the colony statistics (with single-cell statistics linked to each relevant colony)

and one for the single-cell statistics.

Debug output is important to verify accuracy. Two output video files are produced for each

field of view with segmentation masks for colony outlines and single cells drawn in clear

colours so the user can validate that the algorithms are working correctly, see [51].

For the single-cell segmentation, we could not find one set of parameters that would accu-

rately segment the three different species, so we determined four key segmentation parameters

we could alter to tune the algorithm on a species-by-species basis. These are outlined in S1

Table along with the values used. These parameters are chosen to ensure the segmentation pipe-

line is robust to the antibiotics-induced changes in cell morphology observed for each species.

4.5 Single cell segmentation benchmarking

The single-cell segmentation code was compared to manually annotated images to ensure

accuracy. We manually labelled frames from a range of different time points and antibiotic

concentrations for all species to ensure the approach is robust to different cell morphologies,

colony sizes and imaging conditions. The comparison results are outlined in S2 Table,

highlighting three main metrics. Intersection over union (IoU) outlining the overall area over-

lap, mean cell area error as a ratio between the mean cell areas, and mean errors per cell report

the number of segmentation errors per cell in the labelled image [52].

4.6 Extracting single cell statistics

In PadAnalyser, we compute the area (A) of rod-shaped bacteria using the cv2.contourArea func-

tion from the OpenCV library [49], which accurately calculates the area of the mask represent-

ing the bacteria. For width estimation, we utilized the Euclidean distance transform (EDT),

taking twice the maximum value of the EDT as the representative width (w) of the bacteria. This

approach effectively captures the diameter of the widest part of the bacteria. The length (l) was

then computed using the formula l ¼ A
wþ w 1 � p

4

� �
. This formula derives from the relationship

between the area and width of a spherocylinder. The term w 1 � p

4

� �
serves as an adjustment to

the basic area-to-width ratio, compensating for the fact that the bacteria have round caps and

providing a more accurate measure of length for rod-shaped and potentially curved bacteria.

Supporting information

S1 Table. An overview of the parameters used to tailor the segmentation pipeline to the

different species of bacteria. Sigma sets the strength of the Gaussian blur used to smooth the
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initial z-stack projected image before computing the Laplacian. The min mask size filter sets

the minimum size of a mask to be considered a cell. Threshold sets the threshold value used to

binarise the image. The split factor controls how aggressively the masks are split.

(PDF)

S2 Table. Comparison of how accurate the PadAnalyser segmentation code is based on the

metrics intersection over union (IoU), mean cell area error, and mean errors per cell across

different species. The data includes total frame count and cell count to indicate the extent of

the comparison. The row manually annotated compares two frames that both have been man-

ually annotated to assess best-case metrics.

(PDF)

S3 Table. EUCAST MIC concentrations are based on tabulated confidence intervals from

mic.eucast.org. Where data is available but the confidence interval is not reported, the mean

and standard deviation of available data are used to estimate the confidence interval.

(PDF)

S1 Fig. Showing how the colony area growth rate changes over time as the bacteria area is

exposed to various concentrations of the antibiotics. Higher antibiotic concentrations lead

to growth inhibition after varying time delays. A lighter hue corresponds with a lower antibi-

otic concentration. The lines show mean values with the shaded region indicating standard

deviation between repeats. Each plot shows data from three or more repeats. The growth rates

are binned to the nearest 30-minute interval.

(PDF)

S2 Fig. Showing how growth varies with antibiotic concentration between 2 and 3 hours of

incubation on the MAP. The markers show mean and standard deviation between repeats. A

Hill fit is performed for each antibiotic, with the vertical lines showing IC10 and IC90 concen-

trations, where the growth rate is inhibited by 10% and 90%, respectively. The plots for E.coli
with tetracycline, rifampicin, and ampicillin are also presented in Fig 2 and are included here

for completeness.

(PDF)

S3 Fig. Growth rate dependence on antibiotic concentration for E.coli. Each repeat is plot-

ted individually, and Hill fits performed for each repeat. Data used is for the time between 2

and 3 hours of growth. The vertical lines show the IC90 concentrations where growth is inhib-

ited by 90%, which we define as MIC.

(PDF)

S4 Fig. Benchmarking MIC measurements using growth rate after 2.5 hours on the MAP

(IC90) against broth microdilution (MICBM). The OD600 vs time curves from the broth

microdilution experiment are shown in S22 Fig. The antibiotic type is indicated by hue. Each

marker shows the mean and standard deviation between repeats, and the line x = y is shown.

The fold difference plot shows how well MIC from growth rate (IC90) compares with MIC

from broth microdilution (MICBM). The fold difference is computed as log
2

IC90

MICBM
, such that a

value of for example 1 means IC90 is 2 times higher than MICBM, and -2 means 4 times lower.

The bars show the mean and standard deviation between repeats.

(PDF)

S5 Fig. Showing how MIC measurements compare between EUCAST tabulated data from

S3 Fig, measurements based on growth rate measured on MAP platform, and MOR50
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metric on MAP platform for E.coli, S.aureus and P.aeruginosa.

(PDF)

S6 Fig. Showing the growth rate heterogeneity (PGRH) at different antibiotic concentra-

tions. PGRH shows the variation in growth rate between colonies in the same growth environ-

ment, which we define as the standard deviation of colony growth rate for one pad at one

point in time. This value is averaged between 1 to 2.5 hours of incubation on the MAP. The

markers show mean and standard deviation between repeats. There are at least three repeats

per antibiotic/species combination. The white marker in each plot shows the concentrations

selected for subsequent PGRH analysis. The vertical lines correspond to the IC10 and IC90 con-

centrations where the growth rate is inhibited by 10% and 90%, respectively. We see that for

some antibiotics, high concentrations produce a much higher PGRH and that this change is

linked to the MIC. For others, like chloramphenicol, there is a drop in PGRH linked to the use

of the antibiotic, also around the MIC. The plots for E.coli with tetracycline, rifampicin, and

ampicillin are also presented in Fig 2 and are included here for completeness.

(PDF)

S7 Fig. Summarising growth rate heterogeneity (PGRH) and Hill fit exponent (n) for all

the tested antibiotic/species combinations. PGRH has been normalised to the antibiotic-free

growth rate for each species in the same time window. Each bar represents the mean and stan-

dard deviation between repeats, based on a least three repeats per condition. Each antibiotic

has a dedicated hue, and each species has a separate shading.

(PDF)

S8 Fig. Summarising population growth rate heterogeneity (PGRH) for the different anti-

biotic categories. The bars show the mean and standard deviation between repeats and antibi-

otics belonging to the relevant categories. PGRH has been normalised to the antibiotic-free

growth rate for each species in the same time window.

(PDF)

S9 Fig. Scatterplots show how population growth rate heterogeneity (PGRH) correlates

with Hill fit exponent (n) for the three species separately. Data is shown for PGRH at the

peak in the vicinity of the MIC (left) as well as at the concentration closest to the MIC (right).

These two correspond well generally, but notable exceptions exist, including for the DNA syn-

thesis inhibitors where PGRH spikes at concentrations significantly higher than the MIC.

Each marker shows the mean and standard deviation between repeats for a given antibiotic/

species combination (three or more repeats per condition). Each antibiotic is allocated a sepa-

rate hue.

(PDF)

S10 Fig. Showing how growth rate and population growth rate heterogeneity (PGRH) var-

ies between E.coli wildtype WT and ΔtolC strains for two antibiotics, ciprofloxacin and tet-

racycline. The mutant has a lower MIC for both ciprofloxacin and tetracycline, but there is no

significant difference in PGRH between the two. AB Growth rate vs antibiotic concentration

plots for ciprofloxacin and tetracycline. The points show the mean and standard deviation

between repeats. There are three repeats per condition. CD Normalizing the antibtioic concen-

tration to IC50 shows how the susecptibility curve differes between the strains. A normalized

concentration of 0 corresponds to the IC50, while 1 corresponds to IC90. The vertical lines

show the IC10 and IC90 concentrations, respectively. EF shows population growth rate hetero-

geneity (PGRH) with antibiotic concentration normalised as in CD.

(PDF)
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S11 Fig. Showing how cell area changes over time when exposed to various concentrations

of the antibiotics. Initially, all bacteria have the same morphology as they are introduced to

the pads with antibiotics. As time progresses, many antibiotics cause a significant change in

morphology for some concentrations. Generally, the largest differences are apparent after 2

hours of growth. Each line represents the mean area per cell for a given antibiotic concentra-

tion, and the shaded area represents the standard deviation with data originating from three or

more repeats. Darker colours correspond to higher antibiotic concentration, and data points

are binned to the nearest 30 minutes. The plots for E.coli with ciprofloxacin, mecillinam and

chloramphenicol are also presented in Fig 4 and are included here for completeness.

(PDF)

S12 Fig. Boxplots showing how cell area, length and width appear after 2.5 hours of incu-

bation on the MAP. The boxplots show the median, quartiles, and whiskers show the 1.5

times the interquartile range. The plots for E.coli with ciprofloxacin, mecillinam and chloram-

phenicol are also presented in Fig 4 and are included here for completeness.

(PDF)

S13 Fig. Showing how the mean cell areas change with antibiotic concentration based on

data from 2.5 hours of incubation on the MAP. The points represent the mean and standard

deviation of cell areas between repeats. The vertical lines represent IC10 and IC90, respec-

tively.

(PDF)

S14 Fig. Showing how MOR50 is calculated for all antibiotic/species combinations. The

points represent the mean and standard deviation in cell area across repeats. The size of the

error bars is large, as they capture the variation in cell size caused by the cell cycle. The MOR50

threshold is halfway between the area with no antibiotic present and the maximum area

change and is shown as a horizontal line. The cell MIC is where the area curve first crosses this

threshold. This corresponds very closely with the IC50 point as determined by the growth rate,

represented by the vertical grey line. The plots for E.coli with ciprofloxacin and vancomycin

are also presented in Fig 7 and are included here for completeness.

(PDF)

S15 Fig. Showing how cell area changes depend on antibiotic concentration for E.coli, S.
aureus and P.aeruginosa. The plot for E.coli is also shown in the main text but repeated here

for completeness. For each species, curves are shown for all the tested antibiotics after 2.5

hours of incubation with the antibiotics. The antibiotic concentrations are normalised to

growth MIC, and the cell area is normalised so that the no-antibiotic area is 0 and the maxi-

mum change in cell area is 1 (which for vancomycin entails inverting the area). The MOR50

threshold is shown as a horizontal line at 50% change, and the cell MIC is where the area curve

first crosses this threshold. All the antibiotics produce a morphology change around the

growth MIC. The degree of change varies strongly between antibiotics, which is here made

apparent through the noise present in the area signal for antibiotics that induces a small

change in morphology. The antibiotics are categorised by action mechanisms as inhibiting cell

wall synthesis, protein synthesis, and nucleic acid synthesis, in addition to a negative control

where no antibiotic was used. The plot for E.coli with normalized cell area is also presented in

Fig 7 and is included here for completeness.

(PDF)

S16 Fig. Computing Pearson’s and Spearman’s rank correlation coefficients between

MOR50 and IC50 for the three species. All species show the best correlation at 2.5 hours of
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incubation on the MAP platform.

(PDF)

S17 Fig. Scatterplots showing how MOR50 compares with MIC as computed using broth

microdilution control experiments. Points represent the mean and standard deviation

between repeats for each antibiotic/species combination. The fold difference plot shows how

well MIC from MOR50 (MICMOR50) compares with MIC from broth microdilution (MICBM).

The fold difference is computed as log
2

MICMOR50

MICBM
, such that a value of for example 1 means MIC-

MOR50 is 2 times higher than MICBM, and -2 means 4 times lower. The bars show the mean and

standard deviation between repeats.

(PDF)

S18 Fig. Fold difference plots showing comparisons between MIC from broth microdilu-

tion (MICBM), MIC from growth rate (IC90) and MIC from MOR50 (MICMOR50), with the

minimum bactericidal concentration (MBC), respectively. The fold difference is computed

as log
2
MIC
MBC, such that a value of for example 1 means MIC is 2 times higher than MBC, and -2

means 4 times lower. The bars show the mean and standard deviation between repeats.

(PDF)

S19 Fig. MAP setup used for AST where each row has a concentration gradient of a differ-

ent antibiotic, making it possible to test eleven concentrations + control for eight combina-

tions of antibiotic and bacteria at a time.

(PDF)

S20 Fig. An overview of how the contours are split into separate cells based on outline cur-

vature and separation. A shows an example with S.aureus. A spline is fitted to the outline of

the cells (shown in red), and its curvature is computed at each point. Positive curvature maps

to where the surface curves outwards. Discarding all negative curvatures, the maximum curva-

ture locations are found. If more than 10 points separate their position along the curve, and

they are closer than the max width of the contour times the split factor, the split is performed.

Using these points of maximum curvature as seed points, a local search is conducted around

these points to find the pair of points that are closest to each other. B shows an example with

E.coli where the recursive nature of the algorithm is highlighted.

(PDF)

S21 Fig. Step-by-step view of the cell segmentation process. A sample colony is used to

illustrate each step, with a zoomed-in view for each step to highlight the cell details. The col-

ony was captured after two hours of imaging. A First, the z-stack projection of the bright-

field image is processed to generate a binary image containing the cell masks. B Then, the

masks are converted to contours and manipulated to produce accurate segmentation for the

bacteria.

(PDF)

S22 Fig. Showing broth microdilution control experiment results. Each curve shows the

mean and standard deviation in OD600 over time for each antibiotic concentration over time.

The broth microdilution MIC (MICBM) is selected as the lowest concentration of antibiotic

that leads to a growth rate that does not exceed the red OD600 threshold before the black time

threshold of 15 hours. For some antibiotic/species combinations, this never happens. For this

antibiotic, we have marked the species as resistant.

(PDF)
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