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Abstract

Characterising RNA–protein interaction dynamics is fundamental
to understand how bacteria respond to their environment. In this
study, we have analysed the dynamics of 91% of the Escherichia coli
expressed proteome and the RNA-interaction properties of 271
RNA-binding proteins (RBPs) at different growth phases. We find
that 68% of RBPs differentially bind RNA across growth phases and
characterise 17 previously unannotated proteins as bacterial RBPs
including YfiF, a ncRNA-binding protein. While these new RBPs are
mostly present in Proteobacteria, two of them are orthologs of
human mitochondrial proteins associated with rare metabolic dis-
orders. Moreover, we reveal novel RBP functions for proteins such
as the chaperone HtpG, a new stationary phase tRNA-binding
protein. For the first time, the dynamics of the bacterial RBPome
have been interrogated, showcasing how this approach can reveal
the function of uncharacterised proteins and identify critical
RNA–protein interactions for cell growth which could inform new
antimicrobial therapies.
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Introduction

The dynamic interaction between RNA and RNA-binding proteins
(RBPs) is required to regulate a broad spectrum of bacterial
functions, ranging from the concerted modulation of translation by
Hfq (Chao et al, 2012) to the control of metabolic functions at
different growth phases by CsrA (Potts et al, 2017). However,
system-wide analyses of RNA–protein interactions in prokaryotes
have been limited by a lack of techniques to interrogate the
bacterial RBPome. Recently, specific bacteria have been engineered

to polyadenylate part of their transcriptome to allow the
purification of RBPs through oligo(d)T-based methods (Stenum
et al, 2023). However, this approach does not allow the
comprehensive evaluation of RBPs in bacteria. Alternative ortho-
gonal approaches, either by organic extraction (Queiroz et al,
2019), silica enrichment (Shchepachev et al, 2019) and/or glycerol
sedimentation (Smirnov et al, 2016) have now been successfully
applied to systematically catalogue the RBPome of both gram-
negative and positive bacteria (Queiroz et al, 2019; Chu et al, 2022).
These studies have greatly expanded not only the number of RBPs
in bacteria (ranging from ~300 to 1000 proteins)(Queiroz et al,
2019; Shchepachev et al, 2019) but also revealed unconventional
RNA-binding domains in helix–turn–helix and Rossmann-fold
containing proteins (Chu et al, 2022) and led to the discovery of key
regulatory RBPs such as ProQ (Smirnov et al, 2016). Altogether,
recent work has demonstrated that the number of RNA–protein
interactions in prokaryotes had been severely underestimated.

In recent years, studying the dynamic response of the RBPome
has proven fruitful in the eukaryotic context. For example, in
Drosophila the underlying changes in the RBPome upon maternal
to zygotic transition were investigated using an oligo(d)T-based
approach (Sysoev et al, 2016). Hundreds of high-confidence
proteins were identified, and half were not previously known to
interact with RNA. Similarly in macrophages, 402 proteins were
found to bind RNA upon stimulation with lipopolysaccharides,
several of which exhibiting biochemical functions not directly
related to RNA interaction, such as P23, a co-chaperone of HSP90,
was further demonstrated to interact with mRNAs (Liepelt et al,
2016). In breast carcinoma cells, DNA damage was found to
increase polyA-RNA binding for 260 proteins including novel
regulators of splicing efficacy promoting survival after ionising
radiation (Milek et al, 2017). These studies suggest a key role
for many previously uncharacterised RBPs in coordinating
dynamic biological responses. However, no studies to date have
examined how bacterial RBP-RNA interactions change following
perturbation.

In this study, we have applied Orthogonal Organic Phase
Separation (OOPS), a method to retrieve RBPs that is agnostic to
RNA biotypes (Queiroz et al, 2019; Villanueva et al, 2020), to
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characterise how the RBPome is dynamically rewired during different
phases of E. coli cell growth. Our work reveals the RNA-binding
dynamics of 271 RBPs. RNA-binding activity has been detected for 17
proteins with previously unannotated function and five of these RBPs
have been found to be required for efficient bacterial growth. We have
further characterised the interactome of YfiF, the RBP whose removal
has the greatest impact on E. coli growth. YfiF, a protein with a
methyltransferase domain, not only interacts with rRNA and tRNAs,
but also with the regulatory non-coding RNAs (ncRNAs) encoded by
csrB and arrS, as well as with its own RNA, suggesting that the function
of this protein may be riboregulated. Our work further unveils
unexplored RBP function of highly evolutionary conserved proteins,
including two proteins with human mitochondrial orthologs asso-
ciated with metabolic rare disease and suggests a functional
specialisation of RBPs from the bacterial to the eukaryotic organelle
level. Finally, we determine alternative RBP functions for proteins with
well-characterised functions not related with RNA binding such as
HtpG, a known bacterial protein chaperone involved in extraintestinal
pathogenic E. coli virulence (Garcie et al, 2016). We characterise
HtpG as a tRNA binder with increased RNA binding in the stationary
phase. Notably, HtpG interactors include LeuX, a suppressor
tRNA implicated in the expression of pathogenic factors (Dobrindt
et al, 2002).

In conclusion, we present the first dynamic RBPome of a
bacterium, the model organism E. coli, which reveals extensive
reorganisation of RNA–protein interactions during cell growth
stages. Importantly, this work also showcases how the interrogation
of dynamic RNA and protein interactions in prokaryotes can
highlight new key players in cell physiology as well as potential new
antimicrobial targets.

Results

Exploring the E. coli proteome at different
cell growth stages

We first evaluated E. coli protein dynamics along the bacterial
growth stages assessing how the proteome adapts during lag,
exponential and stationary phases of growth in batch culture
(Fig. 1A). Overall, changes in the abundance of 2360 proteins were
quantified in all three phases, representing ~91% of the estimated
expressed E. coli proteome (Soufi et al, 2015). While different
growth stages display unique proteome signatures (Fig. 1B), further
analyses of the variation in protein abundance in the different
phases by linear modelling revealed six distinct profiles (Fig. 1C,D;
Dataset EV1). As expected, proteins upregulated in the exponential
growth phase (Groups 2 and 3) are implicated in metabolic
processes which are required for cellular adaptation to robust
growth (Fig. 1E). Conversely, homoeostatic processes are enriched
in the stationary phase (Group 4, Appendix Fig. S1). Interestingly,
GO-term enrichment analysis of the proteins of the different
groups indicated that proteins implicated in RNA homoeostases
such as ribosome biogenesis and translation, are among the most
differentially expressed proteins across the different bacterial
growth phases, suggesting that RBPs may play a central role
during the transition between exponential and stationary growth
phases (Fig. 1E; Appendix Fig. S1; Dataset EV2). These data suggest
a central role for RBPs in bacterial growth control.

Capturing RNA-binding dynamics

To quantify the RNA-binding capability of RBPs at different stages
of population growth, we started by comprehensively characterising
the E. coli RBPome using OOPS (Queiroz et al, 2019). To do so, we
cross-linked RNA–protein interactions using UV light at 254 nm
and RNA–protein adducts at acidic phenol-chloroform interfaces.
Traditional protocols requiring UV-cross-linking require removing
the media where the cells are grown (e.g., LB medium) to allow the
UV to reach the cells. This may result in quick adaptation to the
new medium, potentially altering biologically relevant
RNA–protein interactions. To avoid this, cells were cultured in
M9 glucose medium supplemented with 10% LB (M9LB) medium,
enabling us to directly cross-link in the culture medium thus
avoiding additional washes which may produce spurious biological
signals. The E. coli RBPome was defined as the set of proteins
sensitive to RNase treatment in OOPS (Villanueva et al, 2020)
(Appendix Fig. S2a; Dataset EV3). Previously identified RBPs were
confirmed using this method (Appendix Fig. S2b), whereas other
nucleic acid-binding proteins, such as the single-stranded DNA
binding protein ssDBP were not sensitive to RNases and therefore
are not included in the RBPome (Appendix Fig. S2c). Using this
approach, 271 proteins were classified as RBPs in E. coli. This RNA-
agnostic method greatly expands the 169 RNA-interacting proteins
in E. coli obtained using RIC (Stenum et al, 2023). Furthermore,
introducing an RNase sensitivity filter to classify RBPs further
refines previous RBP catalogues obtained by phase separation
(Queiroz et al, 2019) (Appendix Fig. S2d). Importantly, 170/271
RBPs were not previously GO-annotated as RNA interactors
(Appendix Fig. S2e–g). As previously described, the resulting
RBPome was enriched in proteins that were significantly more
hydrophobic, positively charged and enriched in K, Y, R amino
acids than the overall E. coli proteome (Appendix Fig. S3).

We evaluated how these 271 RBPs modify their RNA-binding
capacity along the lag, exponential and stationary phases. We used
OOPS to obtain, both the total proteome and the RBPome, from the
same sample, and quantified the differences in protein abundance by
Tandem Mass Tag (TMT) Mass Spectrometry (Fig. 2A). Quantifying
total protein abundance and RBP abundance from the same sample
allowed classification of RBPs in three main groups which: (i) do not
change abundance or RNA-binding across the phases; (ii) change
RNA-binding according to their total protein abundance; or (iii)
change their RNA-binding independently to their abundance (Fig. 2B;
Dataset EV4). We found that 184 proteins belong to clusters ii or iii
meaning that 68% of the bacterial RBPome differentially binds RNA
according to the bacterial growth stage.

Of the RBPs that change their RNA binding between the
exponential and stationary growth phases, we observed that the
RNA binding of 64% of the bacterial RBPome correlates with
general protein abundance (quadrants 1 and 3 in Fig. 2C).
Consistent with the decrease of translation in stationary phase
and the fact that over half of the GO-annotated RBPs are
components of the translational machinery (Holmqvist and Vogel,
2018) 60% of the GO-annotated (Chi-square test, P value < 0.0001)
proteins with a role in protein synthesis decreased in both total
abundance and RNA binding (quadrant 3 (Q3), Fig. 2C). This
includes CspA, a cold-shock protein known to decrease its
abundance and activity after the early-log phase (Jones et al,
1987; Goldstein et al, 1990) (Fig. 2D). Q3 also contains 16 30 S
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ribosomal proteins (out of 17 identified) and 22 50 S ribosomal
proteins (out of 25 identified), along with other proteins implicated
in canonical RNA processes (Fig. 2E). Only 5% of the GO-
annotated RBPs increase in abundance and RNA binding at the
stationary phase (Q1), including Rmf (Q1, Fig. 2C,D), a ribosomal

hibernation factor known to increase its activity in the transition
from exponential to stationary, when it reversibly converts 70 S
ribosomes to their inactive dimeric form (Wada et al, 1995, 1990).
The remainder of proteins in Q1 have not been annotated as RNA
modulators and their most significant GO-term was ‘catalytic

Figure 1. E. coli growth curve dynamic proteome.

(A) E. coli growth curve indicating sampling points for lag, exponential and stationary growth phase. Three independent replicates shown. (B) Principal component analysis
(PCA) of protein abundances. (C) Protein abundance values, abundance z-scores normalised across all samples. Samples hierarchically clustered across all extractions as
shown above by Pearson correlation as the distance metric. Proteins grouped by linear modelling as shown by colour bars on the left. Five independent replicates per
growth phase. (D) Violin plots of protein abundance profiles for each defined group. Group 1 (n= 610), Group 2 (n= 229), Group 3 (n= 257), Group 4 (n= 284), Group 5
(n= 235), and Group 6 (n= 745). (E) GO-term enrichment of top terms for each profile, coloured as shown in (D). Size is inversely proportional to P value (Fisher’s Exact
Test with Bonferroni correction for multiple testing). In bold, terms directly relevant to RNA binding. Asterisk (*) highlighting RNA biology-related terms.
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activity’ (Fig. 2E; Appendix Fig. S1). Many eukaryotic proteins with
catalytic activity e.g., glycolytic enzymes, have the capacity to bind
nucleotides as part of their enzymatic role and are classified as
‘moonlighting RBPs’ (Castello et al, 2015; Hentze et al, 2018; Cieśla,
2006; Curtis and Jeffery, 2021). Indeed, over 35% of the proteins

annotated as having catalytic activity in group 1 are also annotated
as nucleotide binders. These results suggest the role of nucleic acid-
binding proteins as RBPs could be conserved through evolution.

Of particular interest were proteins whose RNA binding did not
correlate with protein abundance (Q2 and 4, Fig. 2C). This non-linear
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behaviour suggests that the RNA-binding capacity of those proteins
could be regulated by alternative mechanisms to protein abundance.
Out of the 66 proteins where RNA binding was not correlated to
protein amount between stationary and exponential phases (FDR
<0.01), only 24 were annotated as RBPs. This includes CsrA, a bacterial
RBP responsible for binding and repressing the expression of
glycogen-synthesis genes during the stationary phase (Potts et al,
2017; Baker et al, 2002; Romeo et al, 1993). In keeping with these
findings, we found a significant increase in RNA-binding of CsrA (P
value: 1.92E-7) in the stationary phase, that is independent of the total
abundance of CsrA protein (Fig. 2D). This reinforces that integrating
total protein abundance and RNA-binding capacity allows capture of
complex regulatory RNA-binding dynamics (Sysoev et al, 2016;
Villanueva et al, 2020; Perez-Perri et al, 2023).

YfiF as a novel RBP fundamental for bacterial growth

We then focused on the 17 proteins, ~6% of the RBPome, that were
poorly characterised and lacked functional annotations. Within this
subset, 8 RBPs were shown to significantly change their RNA-binding
activity between the stationary and exponential phases (Fig. 3A). Three
of these uncharacterised proteins have been suggested to interact with
the translation machinery in interaction-screenings: YfiF physically
interacts with rRNA modifier proteins (GeZi et al, 2021); YbcJ
associates with the 50 S ribosomal subunit (Jiang et al, 2007); and PhoL
(YbeZ) is known to interact with YbeY, a ribosome quality control and
16 S maturation factor (Vercruysse et al, 2016). Finally, although
YebC, has been suggested as a putative transcriptional regulator
(Skunca et al, 2013), previous work has classed it as a potential RNA
interactor in Staphylococcus aureus (Chu et al, 2022).

To explore the role of the eight unannotated dynamically
regulated-RBP in bacterial growth, we analysed the effects of
knocking out these proteins and evaluated the growth phenotype
and morphology in rich and growth-limiting defined media
(Fig. 3B; Appendix Fig. S4). Four of the candidates displayed
significantly decreased growth rates and lower final growth yield,
with the yfiF deletion strain having the strongest phenotype,
supporting recent observations of its importance for bacterial growth
(GeZi et al, 2021). While not previously characterised as an RBP, YfiF
has a predicted RNA-binding domain within its structure (Gaudet
et al, 2011) (Fig. 3C). Moreover, it has been found to physically interact
with previously characterised RBPs including Rne, Rnr and RluC
(Fig. 3D,E; Appendix Fig. S5a), and PhoL, another unannotated RBP
with the second strongest growth phenotype upon its knockout
(Fig. 3B,D). Intriguingly, a YfiF KO did not show changes in cell
morphology over the growth curve (Appendix Fig. S4), in disagree-
ment with previous work (GeZi et al, 2021). To clarify the role of YfiF

as a novel RBP, we further characterised its interactome using iCLIP
(Appendix Fig. S5b–e). In agreement with its postulated role as a
ribosomal dormancy factor and putative tRNA methyltransferase, we
find that YfiF interacts with both rRNAs and tRNAs in vivo (Fig. 3F,G;
Appendix Fig. S5f). The top RNA motif was AACCTTTACW
(Fig. 3H), which was identified in 16 peaks located at rRNAs
(Dataset EV5). Surprisingly, YfiF also showed consistent binding to
non-coding RNAs (Fig. 3G; Appendix Fig. S6), including csrB/C, arrS
and chiX, all of which have a role in cell survival in acidic conditions
(Aiso et al, 2014; Babitzke and Romeo, 2007; Hayes et al, 2006). As the
cells were cultured in M9LB which contains glucose, we expect
fermentation and acidification of the media throughout batch culture
(Walczak et al, 2023), suggesting a putative upregulation of these
ncRNAs. Positionally enriched k-mer analysis (PEKA) (Kuret et al,
2022) revealed a preference for AU-rich k-mers seen in the cases of
ncRNAs (Fig. 3I; Appendix Fig. S7). Importantly, YfiF also interacts
with its own RNA (Fig. 3J), a common feature of several RBPs (Wolin
et al, 2023) that has been previously described as a mechanism to
control their own mRNA expression (Hu et al, 2014).

Evolutionary conservation of uncharacterised RBPs

To evaluate the level of conservation of the 17 new RBPs in E. coli
which lacked functional annotation, we performed a systematic
conservation analysis. As expected, the number of orthologs of
these proteins decreases with evolutionary distance (Fig. 4A), with
Proteobacteria having the highest number of orthologs in common.
Proteobacteria include a significant number of human pathogens
from the Salmonella, Yersinia, Vibrio, Bordetella or Brucella genus.
Interestingly, we found that while some RBPs such as YebC or YjjV
are conserved across almost the entirety of the phylum, some RBPs
such as YbcJ, YdhQ or YjpA are almost exclusively present in
pathogenic species (Fig. 4B; Dataset EV6).

Remarkably, we found three RBPs with conserved orthologs
between E. coli and H. sapiens: YhgF, YgfZ and YebC, which are
nuclear-encoded RBPs localising to the mitochondria. Interestingly,
YebC (TACO1) and YhgF (SRBD1) genes trace back to the last
universal common ancestor, while YgfZ (IBA57) is mostly present
in the proteobacteria family, suggesting that the ancestral IBA57
gene may have been domesticated. Significantly for YgfZ, this gene
is retained in the reduced genomes of related bacterial symbionts of
insects (Prickett et al, 2006), suggesting its function has become
essential in these environments. Importantly, the human orthologs
of these bacterial RBPs have been found to interact with RNA
(Queiroz et al, 2019; Baltz et al, 2012; Castello et al, 2016). Both
YhfG and YgfZ have conserved RNA-binding domains, while YebC
has a highly conserved HTH domain recently found to bind RNA

Figure 2. RNA–protein interactions across E. coli growth.

(A) Top: schematic representation of growth curve sampling strategy. Cells were cross-linked and harvested at lag, exponential and stationary phase. Bottom: schematic
representation of protein extraction. Total proteome extracted from cell lysates and RBPs extracted following OOPS procedure. (B) Protein abundance from total proteome
and RBPome extractions. Abundance z-score normalised across all samples. Proteins are hierarchically clustered across all samples as shown on the left. Four independent
samples for lag phase, three for log and stationary phase for total and RBPome. (C) Quadrant plot of total protein and RBP abundance fold changes between exponential
and stationary phases. Rmf, CspA and CsrA highlighted in green. Size of data point is inversely proportional to P values. Statistical analysis performed using linear
modelling followed by moderated t tests and empirical Bayes method to assess differential expression (see ‘Methods’). (D) Protein abundance levels for CspA, Rmf and
CsrA, data shown as mean across all samples and extraction types. Error bars represent standard error (n= 3 independent replicates). (E) GO-term over-representation
analysis for quadrants 1 and 3 (Q1+ 3) and quadrants 2 and 4 (Q2+ 4), against all proteins identified. BH adj. P value is the Benjamini–Hochberg adjusted P value obtained
from modified hypergeometric test to account for protein abundance.
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in vivo (Chu et al, 2022) (Fig. 4C,D; Appendix Fig. S8a–d). While
annotations for YhgF are very limited and the function of the
human ortholog (SRBD1) is unclear, the RNA interactome of this
protein has been recently characterised in bacteria where it was
found to bind both mRNAs, tRNAs and sRNAs. Indeed, over-
expression of YhgF leads to increased levels of its target rmf mRNA
indicating a role in transcriptional regulation (Stenum et al, 2023).
Interestingly the two other evolutionarily conserved RBPs have
been associated with a number of rare diseases in humans. The
mitochondrial YgfZ ortholog (IBA57) is implicated in the synthesis
of Fe/S proteins and mutations in the IBA57 gene have been linked
with hereditary spastic paraplegia (Lossos et al, 2015) and a
metabolic syndrome presenting with severe myopathy and
encephalopathy(Ajit Bolar et al, 2013). While its RNA-binding
partners have yet to be characterised, IBA57 has been identified as
an RBP in high-throughput assays (Baltz et al, 2012). Finally, the
human ortholog of YebC (TACO1) encodes a translational
activator of COXI (Queiroz et al, 2019; Castello et al, 2016).
Defects in TACO1 result in cytochrome C oxidase deficiency and
late-onset Leigh syndrome (Weraarpachai et al, 2009). Of note, we
found that YebC not only binds RNA differentially at different
stages of bacterial growth, but its knockout displays a severe growth
defect phenotype, suggesting that its role as an RBP and as a
putative translational modulator could be conserved from bacteria
to human. Taken together, these results point to a differential
conservation of the newly detected RBPs, showing proteins
exclusively conserved in Proteobacteria and others showing
conservation across kingdoms. Proteobacteria-specific RBPs, and
especially those enriched in pathogenic microbes with the capacity
to control cell growth, could be explored as new antibiotic drug
targets. Alternatively, the highly conserved proteins described by
this study, open up new questions on the functional diversification
of RBP function across evolution (Appendix Fig. S5c).

Protein chaperones as bacterial RBPs

In addition to those proteins without previously annotated functions, we
found that three of the RBPs with the most significant changes between
exponential and stationary phases have been previously described as
protein chaperones, and none are currently annotated as RNA binders
(Fig. 5A; Appendix Fig. S6a). All three displayed increased RNA binding
in the stationary phase alongside a concomitant increase in protein
abundance (Q1, Fig. 2C), showing consistent binding profiles across the

phases (Fig. 5B). Interestingly, all three proteins are part of the same
protein complex as annotated in the STRING database (Szklarczyk et al,
2021) (Fig. 5C; Appendix Fig. S6b,c). Moreover, HtpG has been recently
reported to require the direct binding and collaboration of DnaK to
function (Corteggiani et al, 2022). While not annotated as RBPs in
bacteria, both DnaK and HtpG are conserved from bacteria to humans,
and their human orthologs have been consistently identified as RBPs
(Queiroz et al, 2019; Baltz et al, 2012; Castello et al, 2012). Importantly,
the RNA-binding peptides identified in the human orthologs of both
DnaK and HtpG are highly conserved in E. coli (Fig. 5D; Appendix
Fig. S9d).While a direct ortholog of DnaK has been found to bind tRNA
in humans(Leone et al, 2023), RNA interactors of HtpG are still
unknown. The RNA-binding of HtpG was confirmed via a PNK assay
(ExtendedData S10). To identify the RNAs that interact with HtpG in E.
coli, iCLIP analysis was carried out (Huppertz et al, 2014) (Appendix
Fig. S7a–d) as applied with the previous candidate. Peaks overlapping in
both experimental replicates and not in the controls were taken forward
and visualised by peak score and size, showing a preference for ncRNAs
genes, mostly tRNAs (Fig. 5E,F; Extended Data S10e). To explore
whether there was a particular structure or sequence motif within the
tRNAs for HtpG binding, the CL peaks were analysed through STREME
(Bailey, 2021) using the NC samples as a negative control. The top motif
was HGGWTTTYAA (Fig. 5G), identified in 16 of the target tRNAs
consistently in the anticodon binding loop (Fig. 5H; Dataset EV7).
Furthermore, we found that HtpG interacts with the LeuX transcript
(Appendix Fig. S10f,g). LeuX codes for a suppressor tRNA that inserts
leucine at the amber codon and is required for the translation of
virulence factors in pathogenic E. coli strains (Dobrindt et al, 2002).
Importantly, LeuX maturation is tightly regulated in a cell growth-
dependent manner (Nomura et al, 1987), correlating with HtpG
increase in RNA binding (Fig. 5F; Appendix Fig. S10f). Altogether, our
unbiased analysis allows assigning novel RNA-binding capabilities to
bacterial proteins and uncovers the interplay between proteins and RNA
species implicated in bacterial pathogenesis.

Discussion

This work presented here represents the first dynamic character-
isation of RNA–protein interaction rewiring through different
stages in the population growth of bacteria. Using the model
organism E. coli, we have queried both the proteome and the
RBPome at the lag, exponential and stationary growth phases. This

Figure 3. Characterisation of Yfif as an RNA-binding protein.

(A) Unannotated RBP protein abundance and RNA-binding dynamics. Abundance z-score normalised within each extraction type. Proteins are hierarchically clustered
across all samples as shown on the left. Proteins highlighted in blue are those which significantly change RNA-binding between the exponential and stationary phase. (B)
Knockout growth curve with standard deviation as error bars in M9LB (top) and M9+ 1% glycerol (bottom) growth media of all proteins with significant changes in RNA
binding in (A). Three independent replicates per line. Data shown as mean values. Error bars represent standard deviation (n= 3 independent replicates). (C) Alphafold
structure prediction of YfiF structure (AF-P0AGJ5-F1). Protein shown as green surface. Canonical RNA-binding domains highlighted labelled in blue and magenta. (D)
Physical interaction network for YfiF as predicted by STRING-db (Szklarczyk et al, 2021). Proteins with black borders are RBPs; size of node inversely proportional to P
value of dynamic RNA-binding between exponential and stationary phase retrieved by linear modelling analysis with the limma R package followed by moderated t tests.
(E) GO-term enrichment of YfiF-predicted interactome. (F) Unique cDNA molecules cross-linked to YfiF protein and aligned to E. coli genome, values adjusted over total
genomic space of the biotype. Reads aligned to tRNA and rRNA located in the ‘intergenic’ category. Data shown as mean values. Error bars represent standard deviation
(n= 3 independent replicates). (G) Peaks overlapping in all three replicates and not observed in either control were plotted by median score and size. Highlighted are
targets with a log2(median peak score) >5 and a log2(peak size) >2. Labelled are the ncRNA passing these threshold values. (H) Top motif calculated by STREME using
YfiF NC peaks as the control sample. (I) RNA structures of two ncRNA YfiF targets as predicted by ViennaRNA (Version 2.6.3) minimum fold energy structure. Highlighted
in black circles is the binding site as determined by iCLIP. (J) Analysis of iCLIP datasets mapped to the yfif gene. Cross-link counts are visualised and normalised to library
size with CLIPplotR. Three independent replicates per CL sample were performed with one replicate devoted to each non-cross-linked sample.
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has revealed that 77% of bacterial RBPs change their abundance
(FDR < 1%) along the different growth stages and that 68% modify
their RNA interaction between exponential and stationary states
(FDR < 1%). Our analyses unravel new RBP functions for
previously annotated bacterial proteins, such as the HtpG
chaperone. Importantly, they also uncover the RNA-interaction

properties of 17 experimentally unannotated E. coli proteins. This
has led to the characterisation of YfiF as a tRNA-binding protein as
well as a protein required for bacterial growth.

Comprehensive RBP characterisation in bacteria is under-
explored in comparison with eukaryotes, mainly due to previous
technical limitations. Here, we have taken advantage of our

Figure 4. Evolutionary conservation of unannotated proteins.

(A) Tree of life covering the three Domains: bacteria (blue), archaea (pink), and eukarya (green). Heatmap wrapping the tree indicates the presence of an ortholog for
each of the 17 candidate proteins. Bar plot indicates the sum of orthologs per tip (maximum value 17) Data available in Dataset EV6. Arrow indicates the branch of
proteobacteria phylum. (B) Proteobacteria phylum, where the box at tip represents pathogenic species found at leaf tip. Heatmap indicates presence of ortholog, if unfilled
no ortholog identified. Protein names in blue are dynamic RBPs belonging to Q2/4, in black belong to Q1/3. Protein names in grey do not show significant changes in RNA-
binding across the growth curve. Black box highlighted proteins with canonical RNA-binding motif. E endosymbionts. (C) YebC (1KON) and its human ortholog (TACO1;
AF-Q9BSH4-F1) aligned and coloured by RMSD. Only YebC shown here. Dark blue represents a high alignment score, higher deviations are in red. (D) YgfZ (1VLY) and its
human ortholog (IBA57, 6QE3) aligned and coloured by RMSD as in (C). Residues not used for alignment are coloured grey.
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Figure 5. HtpG characterisation as E. coli RBP.

(A) Correlation between the P values of the differences in RNA-binding dynamics between the stationary and exponential phases, and the RNase assay. Statistical analysis
performed using linear modelling followed by moderated t tests. (B) Volcano plot representations of RBPs between the different growth phases. CspA and Rmf (canonical
RBPs) highlighted in green, molecular chaperones in dark blue. Statistical analysis performed using linear modelling followed by moderated t tests and empirical Bayes
method to assess differential expression (see ‘Methods’). (C) Physical interaction network of HtpG as predicted by STRING-db. In blue, candidates highlighted in (A, B).
Proteins detected as RBPs outlined in bold. (D) Alphafold structure prediction of entire HtpG sequence (AF-P0A6Z3-F1) coloured by RMSD score when aligned with
human ortholog (HSP90AA1). In opaque, the peptides are predicted to bind RNA in the human ortholog as predicted by (Queiroz et al, 2019; Castello et al, 2016), all found
in the structurally conserved C-terminal domain. (E) Unique cDNA molecules cross-linked to HtpG protein and aligned to E. coli genome, values adjusted over total
genomic space of the biotype. Reads aligned to tRNA and rRNA located in the ‘intergenic’ category. Data shown as mean values. Error bars represent standard deviation
(n= 2 independent replicates for CL, n= 1 for controls). (F) HtpG peaks found only in the ‘HtpG CL’ replicates plotted by median peak size versus peak value. tRNA genes
are highlighted in violet. (G) Top HtpG binding motif as predicted by STREAM. (H) Schematic representation highlighting the identified binding peak of HtpG on the
secondary structure of tRNA Leu-TAA-1-1 and Cys-GCA-1-1, delineated in red.
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previously developed methodology, OOPS (Queiroz et al, 2019;
Villanueva et al, 2020), to catalogue and characterise the dynamics
of the E. coli RBPome. As previously shown, the recovery of RNA
biotypes bound by RBPs via OOPS is unbiased for transcripts over
60 bp (Queiroz et al, 2019). Since OOPS requires UV-cross-linking
of RNA–protein interactions, it will retrieve RBPomes constituted
by those proteins that interact with RNA at less than 4 Å and are
proximal to a uracil nucleotide. While some RBPs may not be
amenable to UV-cross-linking, this approach allows for a stringent
discrimination between direct and indirect RNA interactors in
ribonucleoprotein complexes.

Our analysis of the RBPome dynamics during cell growth is
consistent with targeted studies of RNA-interacting proteins in E.
coli and other bacteria. We not only recapitulate previously
established RBP dynamics, such as an increase of Rmf RNA-
binding between the exponential and the stationary phase (Wada
et al, 1995, 1990) or an increased binding of translation-related
RBPs from the lag to the exponential phase, but also more complex
regulatory profiles. This includes the increase in RNA binding of
CsrA irrespective of its abundance during cell growth. Importantly
we have identified 17 partially or fully uncharacterised RBPs which
dynamically change their RNA binding in the stationary phase. The
case of YfiF is of particular interest: While current information
about this protein is limited, it is only present in Proteobacteria,
and its absence is known to have a detrimental effect in the growth
of E. coli. Interestingly, the predicted RNA-binding domain of YfiF
suggests that it could act as a ribosomal dormancy factor (GeZi
et al, 2021). Here, we find that YfiF not only interacts with rRNAs
and tRNAs, but also with other regulatory ncRNAs as well as with
its own RNA. Given that this protein has a methyltransferase
domain, we hypothesise that this RBP acts as an rRNA and tRNA
methyltransferase, and that its function is regulated by the binding
of other regulatory ncRNAs such as rnpB, and this will form the
basis of further studies. Moreover, YfiF binds its own RNA,
therefore it is possible that YfiF expression could be further
regulated by a post-transcriptional feedback loop, as it has been
found for other RBPs (Hu et al, 2014). Importantly, its impact on
cell growth and the fact that YfiF is specific to the Proteobacteria
family, indicates it could represent a new target for antibiotics.
Interestingly, 3 of the unannotated bacterial RBPs have orthologs in
humans. Strikingly, all of these are mitochondrial proteins and two
of them (YgfZ and YebC) have been associated with mitochondrial-
linked metabolic syndromes (Lossos et al, 2015; Ajit Bolar et al,
2013; Weraarpachai et al, 2009). This can suggest further studies to
determine the role for these proteins across evolution and unveil
the process of functional specialisation from bacterial to organelle
homoeostasis.

Finally, we have also shown that protein chaperones such as
HtpG bind RNA in E. coli, specifically at the stationary phase. HtpG
is required for the synthesis of secondary metabolites implicated in
extraintestinal pathogenic E. coli virulence (Garcie et al, 2016),
while its human ortholog has a critical role in mitochondrial
protein import (Young et al, 2003). In this study, we reveal that
HtpG may have an extra function as a tRNA-binding protein. This
is especially relevant considering that small RNA species can be
underrepresented in OOPS owing to inefficient recovery during
aqueous:organic phase separation (Queiroz et al, 2019). Impor-
tantly, our qualitative analysis shows that HtpG interacts with
LeuX, a suppressor tRNA required for the translation of virulence

factors in pathogenic E. coli, suggesting an additional mechanism
linking HtpG function to E. coli virulence.

Taken together, this study provides the most comprehensive
catalogue of protein dynamics at the different stages of bacterial
growth and represents the first dynamic assessment of RBP
rewiring during the E. coli growth cycle. We showcase how the
interrogation of RBP dynamics can be used to discover the
functions of uncharacterised proteins in any bacteria. Therefore, we
anticipate this approach will allow exploring new RBP functions,
and their evolution and adaptation across kingdoms. Furthermore,
characterising essential protein–RNA interactions for pathogenic
bacterial survival could reveal novel targets for the development of
antimicrobials.

Methods

Bacterial growth media M9LB

Media prepared with autoclaved 15.6 g M9 minimal media salts 5×
(Sigma-Aldrich), 10 mL glucose 20% (w/v), 1 mL MgSO4.7H20
(1 M), 1 mL thiamine hydrochloride (1 mg/mL), 1 mL CaCl2 (1 M)
in 1 L purified water. Media was supplemented with 10% v/v LB
(lysogeny broth). The pH was 7.0 at 25 °C.

Bacterial culture

E. coli DH5ɑ cell cultures (150 mL) were grown in M9LB bacterial
growth media at 37 °C under low light conditions and constant
shaking (250 RPM).

Growth curve assay

Overnight cultures of E. coli DH5ɑ were washed once in phosphate-
buffered saline solution (PBS; Thermo Scientific), and pelleted. The
supernatant was removed, and cells resuspended culture media and
inoculated in 150 mL to an initial optical density (OD600) of 0.05.
Cell cultures were harvested at OD 0.1, 0.4 and 1.4 to sample for
lag, exponential and stationary phase, respectively.

Knockout growth curve phenotyping

E. coli BW25113 gene knockouts of interest were isolated from the
KEIO collection (Baba et al, 2006) with the respective genes
disrupted by the replacement of the ORF by the KanR cassette.
Overnight cultures of the E. coli gene knockouts were grown on LB
and then washed with PBS to remove residual LB. The washed cells
were then used to inoculate into 96-well plates to an OD600 of 0.05
in either M9LB or M9 glycerol (48 mM Na2HPO4, 22 mM KH2PO4,
19 mM NH4Cl, 9 mM NaCl, 2 mM MgSO4, 1% glycerol). Triplicate
cultures were grown at 37 °C, and shaken in an Epoch2 microplate
spectrophotometer (BioTek). OD600 measurements were taken
every hour up to 50 h.

Imaging was carried out on 2 × 2 mm agar pads produced by
sandwiching a solution of 1.5% molten agarose in medium (LB or
Gly) between two microscope slides. As a mould for the pads and to
ensure that their thickness was uniform, two gene frames (Thermo
FIsher, AB0576) were stacked between the microscope slides. When
solid, the 1x1cm pads were split manually with a scalpel and
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positioned in an imaging chamber made up of two coverslips held
together by a larger gene frame (Thermo Fisher, AB0577). Cells
were then transferred to a Nikon Eclipse Ti-E inverted microscope
preheated at 37 °C and automatically imaged in phase contrast for
up to 8 h using a Genicam (Teledyne FLIR BFS-U3-70S7M-C) and
a ×60 magnification (oil objective, numerical aperture 1.45) for a
0.1067-pixel size. Phase contrast images were segmented using
SuperSegger (Stylianidou et al, 2016).

Bacterial N-terminal epitope tagging

Proteins of interest were amplified by PCR from E. coli DH5ɑ and
inserted into the expression vector pBADcLIC (Geertsma et al, 2008)
by recombination-based cloning, which introduces a C-terminal tag
(-ENLYFQGHHHHHHHHHH). The resulting plasmids were then
transformed into E. coli DH5ɑ for downstream studies.

Orthogonal organic phase separation (OOPS)

Cell cultures were grown in 150 mL of M9LB media overnight
(~16 h), or to the indicated optical density for dynamic experi-
ments. In all, 10exp7 cells were used per replica and condition.
OOPS was performed according to (Villanueva et al, 2020); briefly:
In non-cross-linked (NC) controls, cells were immediately pelleted
at 6000 × g, and the supernatant was removed and placed on ice. In
cross-linked (CL) samples, UV cross-linking was performed
directly on the culture by UV irradiation at 254 nm with 700 mJ/
cm2 (CL-1000 Ultraviolet Crosslinker; UVP). Immediately after
cross-linking cells were pelleted and the supernatant removed. Cell
pellets (both NC and CL) were resuspended in 50 µL acidic
guanidinium-thiocyanate-phenol (Trizol, Thermo Fisher Scienti-
fic), and 500 µL of 0.5-mm glass beads (Sigma-Aldrich) were added
to each Eppendorf. Cell lysates were disrupted by two rounds of
lysis at 6 m/s for 60 s (MP FastPrep-24 5 G Tissue Homogenizer;
MP Biomedicals). In between runs, samples were placed on ice to
avoid warming. A further 1 mL of Trizol was added to each sample
and placed on a table-top shaker for 5 min at 1100 RPM. To clear
the lysate, samples were centrifuged for 5 min at 6000 × g at 4 °C
and the supernatant was transferred to a new tube. If total
proteome was assayed, an aliquot of 100 µL was taken from the
homogenised lysate for TMT labelling. To recover the RNA-
binding proteins (RBPs), 200 µL of chloroform (Fisher Scientific)
was added to each sample, phases were vortexed, and the sample
was centrifuged for 15 min at 12,000 × g at 4 °C. The upper,
aqueous phase (containing non-cross-linked RNAs) and the lower,
organic phase (containing non-cross-linked proteins) were dis-
carded. Interphase (containing the protein–RNA adducts) was
subjected to two additional rounds of Trizol phase separation,
precipitated by the addition of nine volumes of methanol, and
pelleted by centrifugation at 14,000 × g RT for 10 min with the
exception of samples for the RNase control assay.

RNase treatment of OOPS interphases

For RNase control samples, three rounds of phase separation were
performed, and the resulting interphase was resuspended in 1 mL
of RNase-free water. Suspension was slowly mixed by inversion and
centrifuged at max speed for 2 min. The supernatant (RNase-free
water and any remaining organic phase) was discarded, and the

pellet was resuspended in 500 µL of 1% SDS in RNase-free water.
The interphase was solubilised by gentle pipetting and 100 µL 3 M
sodium acetate (Invitrogen) was added. Samples were then vortexed
and 600 µL isopropanol added, placed on ice for 10 min and
centrifuged at max speed for 10 min. Once again, the supernatant
was discarded, and the pellet was washed first with 100% ethanol
and then with 70% ethanol. Supernatant newly removed and pellets
resuspended in 200 µL RNase-free water. 90 µL of the solubilised
interface was transferred to a new tube and 10 L 10× RNase control
buffer (100 mM Tris-HCl pH 7.5, 3 M NaCl, 50 mM EDTA, 10×
DTT) was added; this is the RNase-untreated sample. Another
90 µL of solubilised interface was transferred to a new tube and
10 µL 10X RNase digestion buffer (100 mM Tris-HCl pH 7.5, 3 M
NaCl, 50 mM EDTA) added; this is the RNAse-treated sample. All
samples were incubated at 60 °C for 10 min to inactivate any
potential RNase contamination, and 2 µL of RNase A/T1 mix
(Thermo Scientific, EN0551) was added to the RNAse-treated
samples. All samples were incubated for 4 h at 400 RPM and at
37 °C. One millilitre of Trizol was added and samples were
homogenised by vortexing. As per standard OOPS workflow,
200 µL of chloroform (Fisher Scientific) were added, phases were
vortexed, and the sample was centrifuged for 15 min at 12,000 × g at
4 C. Interface (containing the protein–RNA adducts) was subjected
to extra Trizol phase separation cycles, precipitated by addition of
nine volumes of methanol, and pelleted by centrifugation at
14,000 × g for 10 min at RT.

Proteomic sample preparation

Pelleted interphases were resuspended in 100 µL of 100 mM
TEAB (Sigma-Aldrich) and reduced with 20 mM DTT (Sigma-
Aldrich) for 60 min at RT and alkylated with 40 mM iodoaceta-
mide (IAA, Sigma-Aldrich) in the dark for at least 60 min at
RT. Samples were digested with 1 µg trypsin (Promega) overnight
at 37 °C, with the exception of samples for TMT labelling, which
were digested with 1 µg Lys-C (Promega) overnight at 37 °C.
Subsequently, 1 µg of modified trypsin (Promega) was added,
and the samples were incubated for 3–4 h at 37 °C. Samples were
then acidified with trifluoroacetic acid (TFA, 0.1% (v/v) final
concentration; Sigma-Aldrich) and centrifuged for 10 min at
21,000 × g and RT. The supernatant was frozen at −80 °C until
required.

TMT samples: For peptide clean up and quantification, 200 µL
of Poros Oligo R3 (Thermo Fisher Scientific) resin slurry (~150 µL
resin) was packed into Pierce centrifuge columns (Thermo Fisher
Scientific) and equilibrated with 0.1% TFA. Samples were loaded,
washed three times with 150 µL 0.1% TFA and eluted with 300 µL
70% acetonitrile (ACN). 10 µL from each elution was removed for
Qubit protein quantification assay (Thermo Fisher Scientific)
performed according to the manufacturer’s protocol, with the
remaining sample retained for MS.

LC-MS/MS

For label-free quantification (LFQ), injected samples were analysed
using an Ultimate 3000 RSLCTM nanosystem (Thermo Scientific,
Hemel Hempstead) coupled to an Orbitrap EclipseTM mass
spectrometer (Thermo Scientific). The sample was loaded
onto the trapping column (Thermo Scientific, PepMap100, C18,
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300 µm × 5 mm), using partial loop injection for 3 min at a flow rate
of 15 µL/min with 0.1% (v/v) formic acid in 3% acetonitrile. The
sample was resolved on the analytical column (uPAC 200 cm
column) at a flow rate of 300 nL/min using a gradient of 97% A
(0.1% formic acid) 3% B (80% acetonitrile 0.1% formic acid) to 35%
B over 340 min, then to 90% B for an additional 5 min, then to 90%
B for another 4 min, percentage of B was then lowered to 3% to
allow the column to re-equilibrate for 20 min before the next
injection. The data-dependent programme used for data acquisition
consisted of a 120,000-resolution full-scan MS scan (AGC set to
100% (4E6 ions) with a maximum fill time of 50 ms). MS/MS was
performed at the mass range of 150–2000m/z using a resolution of
60,000 (AGC set to 100% (1E5 ions) with a maximum fill time of
118 ms) with an isolation window of 1.2m/z and an HCD collision
energy of 30%.

TMT-10plex (Thermo Fisher Scientific) labelling from desalted
peptides was performed according to the manufacturer’s protocol.
Equal amounts of desalted peptides were labelled immediately after
being quantified with Qubit protein assay (Thermo Fisher
Scientific) as per the manufacturer’s instructions. Multiplexed
TMT samples were separated into four fractions using the Pierce
High pH Reversed-Phase Peptide Fractionation Kit (Thermo
Fisher Scientific). TMT labelled fractions were analysed in an
Orbitrap Fusion Lumos using a resolution of 50,000. Mass spectra
were acquired in positive ion mode applying data acquisition using
synchronous precursor selection MS3 (SPS-MS3) acquisition mode
(McAlister et al, 2014). Data deposited in PRIDE (Vizcaíno et al,
2016) (accession number: PXD043373).

MS spectra processing and peptide and
protein identification

Raw data were viewed in Xcalibur v2.1 (Thermo Fisher Scientific),
and data processing was performed using Proteome Discoverer
v2.1 (Thermo Fisher Scientific). The raw files were submitted to a
database search using Proteome Discoverer with Mascot,
SequestHF and MS Amanda (Dorfer et al, 2014) algorithms
against the E. coli K-12 DH5ɑ database downloaded in early 2017,
containing E. coli protein sequences from UniProt/Swiss-Prot and
UniProt/TrEMBL. Common contaminant proteins (e.g., porcine
trypsin) identified were removed from the results lists before
further analysis, except in the case of the RNAse assay, where
porcine trypsin was kept for normalisation. The spectra identifica-
tion was performed with the following parameters: MS accuracy,
10 p.p.m.; MS/MS accuracy of 0.05 Da for spectra acquired in
Orbitrap analyser and 0.5 Da for spectra acquired in Ion Trap
analyser; up to two missed cleavage sites allowed; carbamido-
methylation of cysteine (as well as TMT-10plex tagging of lysine
and peptide N terminus for TMT labelled samples) as a fixed
modification; and oxidation of methionine and deamidated
asparagine and glutamine as variable modifications. Percolator
node was used for false discovery rate estimation and only rank 1
peptide identifications of high confidence (FDR < 1%) were
accepted. A minimum of two high-confidence peptides per protein
was required for identification using Proteome Discoverer.

TMT reporter values were assessed through Proteome Discovery
v2.1 using the Most Confident Centroid method for peak integration
and integration tolerance of 20 p.p.m. Reporter ion intensities were

adjusted to correct for the isotopic impurities of the different TMT
reagents (manufacturer’s specifications) (Dataset EV8).

Proteomics bioinformatics and data analysis

Peptide-level output from Proteome Discoverer was reprocessed
with the ‘add_master_protein.py’ script (https://github.com/
TomSmithCGAT/CamProt) to ensure uniform peptide-to-protein
assignments for all samples from a single experiment and identify
peptides that are likely to originate from contaminating proteins
such as keratin. For quantitative experiments, peptide-level
quantification was obtained by summing the quantification values
for all peptides with the same sequence but different modifications.
Protein-level quantification was then obtained by applying the
‘robust’ approach from the MSnbase R package (Gatto and Lilley,
2012). For the growth curve experiments (n = 5 for each phase), the
protein abundance was quantified by label-free quantification
(LFQ) and data analysis was performed using the pRoloc R
package (Gatto et al, 2014). For TMT experiments, data analysis
was performed using the MSnbase R package (Gatto et al, 2014).
Log2-transformed protein abundance was centre-median normal-
ised within each sample. For the RNase assay, the ratio between
treated and untreated protein abundance was calculated for each
sample separately and aggregated to average protein ratio. Samples
were normalised against the input porcine trypsin (UNIPROTKB
ID: P00761) to correct for any downstream pipetting error.

iCLIP

iCLIP protocol was applied as described in Lee et al, 2021. Briefly,
bacterial strains transformed with tagged protein of interest (see
‘Bacterial N-terminal epitope tagging’), as well as a wild-type (WT)
strain, were induced with 0.01% L-arabinose at the exponential
phase (OD ~0.4) and harvested at stationary phase and irradiated
with UV-C light for the cross-linked samples (CL) or directly
pelleted for the non-cross-linked (NC). Here, the WT strain was the
negative control and was UV-irradiated. Cell suspensions were
cleared once, pelleted and resuspended in iCLIP lysis buffer
(50 mM Tris-HCl pH 7.4, 100 mM NaCl, 1% Igepal CA-630 (Sigma
I8896), 0.1% SDS, 0.5% sodium deoxycholate, 1× cOmplete
protease inhibitor cocktail, RNasin) and cells were lysed as detailed
above. To trim the cross-linked RNA, 2 µL TURBO DNase
(AM2238 Thermo Fisher Scientific) and 1 µL diluted RNAse
(1:100–1:6000 dilution from 10 U/µL stock EN0602, Thermo Fisher
Scientific) were added to the cellular extracts. The solution was
incubated at 37 °C for 3 min and immediately transferred on ice.
Target proteins of interest were purified by incubating lysates
overnight with His-tag antibody (CST #2366) conjugated to Protein
G Dynabeads. Dephosphorylation of cyclic phosphate groups were
carried out with T4 PNK (10 U/µL, M0201, NEB) in a low pH
buffer (5× PNK pH 6.5 buffer, PNK,FastAP alkaline phosphatase
(EF0654, Thermo Fisher Scientific), RNAsin) for 40 min at 37 °C.
Pre-adenylated L3-1R-App 3’ adaptors were ligated using T4 RNA
ligase 1 (M0204, NEB) for 75 min at 25 °C. Excess adaptors were
removed by RECJ (NEB M0264S) and 5’-deadenylase (NEB
M0331S) treatments. RNA–protein complexes were isolated by
SDS-PAGE and nitrocellulose transfer. RNA was then released
from the membrane by Proteinase K treatment and purified by
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phenol-chloroform extraction. Isolated RNA was reverse tran-
scribed with SuperScript IV (Invitrogen, 18090010) and after
reverse transcription, RNA was degraded by alkaline hydrolysis
with NaOH, underwent a bead-based purification and circularised
with CircLigase (Epicentre/Illumina, CL9021K) for 2 h. Circu-
larised cDNA was directly PCR amplified, quantified with
Bioanalyzer and sequenced on Illumina MiSeq. Adaptor and
primer sequences listed in Dataset EV9. Data deposited in GEO
(accession number: GSE235661).

iCLIP analysis

iCLIP data were demultiplexed using iCount (version 2.0.0) de-
multiplex function (https://github.com/tomazc/iCount) according
to the sample barcodes (Dataset EV9). Demultiplexed files were
uploaded to https://app.flow.bio/ and run on the CLIP-seq v1.1
pipeline (https://github.com/goodwright/clipseq/tree/1.1) using the
genome found at https://www.ncbi.nlm.nih.gov/datasets/genome/
GCF_000005845.2/ and pre-mapped against an artificial genome
containing all tRNAs found at http://gtrnadb.ucsc.edu/genomes/
bacteria/Esch_coli_K_12_MG1655/eschColi_K_12_MG1655-
mature-tRNAs.fa Execution was run with default parameters except in
the case of STAR, where the following arguments were detailed:
--outFilterMultimapNmax 100 --outFilterMultimapScoreRange 1 --out-
SAMattributes All --alignIntronMin 1000000 --outFilterScoreMin 10
--alignEndsType Extend5pOfRead1. BAMs were filtered for uniquely
mapped reads and cross-link sites were taken as read start - 1 position.
Peaks were called using iCount-Mini v2.0.3 (https://github.com/ulelab/
icount-mini). The resulting ‘*.peaks.bed* files were downloaded for
downstream analysis. All peaks identified in the negative control were
blacklisted using bedtools (version 2.31.1) intersect -v. The remaining
peaks were intersected among the CL replicates using bedtools
command intersect -wo -f 0.1 -r and intersect -u. For each peak the
median score and peak size was computed across the replicates.
Comparative visualisation of iCLIP data was generated with the
CLIPplotR package (Chakrabarti et al, 2023), which takes cross-linked
sites detected as input, and normalises them by library size and plots
over regions of interest. For the detection of binding motifs,
Positionally enriched k-mer analysis (PEKA) (Kuret et al, 2022) was
completed in the CLIP-seq v1.1 pipeline followed by STREME analysis
on the peak sequences with the parameters --verbosity 1 --oc. --dna
--totallength 4000000 --time 14400 --minw 8 --maxw 15 --thresh 0.05
--align center, where the NC peaks were used as the negative control.

Statistics

Data handling was performed with R v4.0.2 using tidyverse
(Wickham et al, 2019). Plotting was performed with the ggplot2
R package (Wickham, 2009).

For the RNase assay experiments, only proteins present in both
treated and untreated conditions were considered. For the rest of the
proteins, all observations across the replicates were treated as
independent observations. DeqMS R package (Zhu et al, 2020) was
applied to model the abundance as a function of the condition (RNase-
treated or untreated), where log2 median RNase/Control ratio >0
(enriched) or <0 (depleted), with a BH-adjusted P value < 0.01
considered significant. Proteins with fewer than 2 hits per condition
were excluded from the statistical test because of insufficient power.

For the dynamic growth curve experiment by label-free
quantification (LFQ), proteins with a change of abundance were
identified using the ‘lm’ function in R (Ritchie et al, 2015).
Specifically, to identify protein with a change in abundance between
two growth phases, total abundance was modelled as a function of
the growth phase alone (abundance ~ growth phase). The P values
for the growth curve coefficients for each protein were adjusted to
account for multiple hypothesis testing according to Benjamini and
Hochberg (Benjamini and Hochberg, 1995) and proteins with an
adjusted P < 0.01 (1% FDR) were considered significant. For the
heatmap representation, protein abundances were z-score normal-
ised within the total samples. Hierarchical clustering was
performed with the R hclust function using Pearson correlation
as the distance metric and average linkage.

For the dynamic growth curve experiment by TMT quantifica-
tion, proteins with a change of abundance or RNA binding were
identified using the lm function in R. Specifically, to identify
protein with a change in abundance between two growth phases,
total abundance was modelled as a function of the growth phase
alone (abundance ~ growth*phase). The P values for the growth
curve coefficients for each protein were adjusted to account for
multiple hypothesis testing according to Benjamini and Hochberg
(Benjamini and Hochberg, 1995) and proteins with an adjusted
P < 0.01 (1% FDR) were considered to have changed abundance.
To identify proteins with a change in RNA binding between two
growth phases, protein abundance in the total proteome and OOPS
samples was modelled as a function of the growth phase, the
extraction type (‘total’ or ‘OOPS’) and the interaction between
these two variables (abundance growth phase + type + [growth
phase * type]). The interaction term denotes whether: (i) The
abundance in ‘total’ and ‘OOPS’ follow the same pattern across
the growth phases (coefficient is zero), indicating total abundance
determined the amount of protein bound to RNA; or (ii) The
abundance in ‘total’ and ‘OOPS’ diverge (nonzero coefficient),
indicating a change in RNA binding between the phases. The P
values for the interaction term were obtained and adjusted as
indicated above. For the heatmap representation, protein abun-
dances were z-score normalised within the total and OOPS
samples separately. Hierarchical clustering was performed with
the R hclust method using Pearson correlation as the distance
metric.

Physicochemical property analysis of RBPs

Protein properties were obtained with the ‘Peptides’ R package
(version 2.4.5) (Osorio et al, 2015). Normality between the groups
was assumed due to the sample size (>60 data points per group).
Variance was assessed visually as well as formally by the
‘leveneTest’ function from the car R and a t test was performed
to assess significance.

Protein interaction network analysis

Proteins queried in the StringApp on the Cytoscape v3.9.1
interface (Doncheva et al, 2019, 2023). For physical subnetworks,
proteins queried against the Escherichia coli K-12 substr. MG1655
pre-loaded database and filtered above 0.4 in confidence
score value.
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Ortholog analysis

The hierarchical orthologous groups (HOGs) for each candidate
protein were retrieved from the OMA browser (Altenhoff et al,
2021) (Dataset EV10), these are sets of genes that are inferred to
have descended from a common ancestral gene. Resulting sets
were intersected at the genus level with the interactive Tree of Life
(iTOL) version 5 (Letunic and Bork, 2021) containing 191 unique
tips across the three Domains of life, using R custom scripts.
Code available upon request.

Structural conservation analysis

Uniprot IDs of the candidate proteins were used to retrieve all their
associated PDB IDs using the Uniprot Retrieve/ID mapping tool. If no
experimentally resolved structures were available, AlphaFold predic-
tions were used (Jumper et al, 2021; Varadi et al, 2022). Orthologs
were defined via the InParanoid database (Sonnhammer and Östlund,
2015) and structures aligned with the following command: ‘align
bacterial_protein human_protein‘ on PyMOL Version 2.5.2, where
possible experimentally resolved structures were used. Root Mean
Square Deviation (RMSD) calculated as defined in script at https://
pymolwiki.org/index.php/ColorByRMSD and the distances between
aligned C-alpha atom pairs are stored as B-factors of these residues,
command run: ‘colorbyrmsd human_protein, bacterial_protein,
doAlign=1, doPretty=1‘. Structures then coloured by RMSD using
‘spectrum b, blue_white_red, minimum=0, maximum=10’, with a
ramp included with ‘ramp_new ramp, POI, [0, 5, 10], [blue, white,
red]’ where POI stands for ‘protein of interest’. Highlighted in
the structure are the predicted RNA-binding motifs by RBDpep
(Castello et al, 2016) and/or OOPS direct evidence (Queiroz et al,
2019), found by aligning protein sequences with online tool
Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/) (Sievers
et al, 2011).

Data availability

The datasets produced in this study are available in the following
datasets: (1) Mass spectrometry proteomics data: deposited to the
ProteomeXchange Consortium via the PRIDE (Vizcaíno et al, 2016)
partner repository with the dataset identifier PXD043373. (2) iCLIP
sequencing data: deposited to the Gene Expression Omnibus (GEO),
accession code GSE235661.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44320-024-00031-y.
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